Gaussian Wave packet- Griffiths 2.22

lazyluke
Messages
12
Reaction score
0

Homework Statement


Hi, The problems asks to calculate multiple things for a Gaussian wave packet. Steady state function: psi(x,0)=A*exp(-ax^2).My problem is that I'm stuck at calculating <p^2>.

Homework Equations


<p^2>=Int(|psi|^2*(-1*h^2*d^2/dx^2))dx or
<p^2>=Int(psi*(-1*h^2*d^2/dx^2(psi-conjugate)))dx ?
I am not sure if I can use the expression for |psi|^2- which is already defined and I think calculating the second expression will be wrong since it will give us an answer with i and t sine the exponent from complex conjugate of psi will come down or am i wrong?

The Attempt at a Solution


I know I'm doing something wrong since after i evaluate integrals I get:
<p^2>=4*(2/m)^(1/2)*w^6h^2*(4w^2*(pi/w^6)^(1/2)-2(1/2(pi/w^2)^(1/2)) where w=(a/(1+(2ihat/m)^2)^1/2 which cancels out to 0, somehow I should get ah^2. Now I'm not sure is I should use <p^2>=Int(|psi|^2*(-1*h^2*d^2/dx^2))dx where its a second derivative of |psi|^2 or <p^2>=Int(psi*(-1*h^2*d^2/dx^2(psi-conjugate)))dx where the second derivative is only of the complex conjugate and not the |psi|^2. Or I should not use the w just use the expression defined above? (I thought since w is independent of x it would not matter). Any help will do, just before Sunday evening as its due on Monday morning.
 
Last edited:
Physics news on Phys.org
&lt;p^2&gt;=|A|^2 \int \psi^*(-h^2 \frac{d^2}{dx^2} \psi)dx

Is the correct way to evaluate the expectation value.

As for the integral, I believe there is a very cleaver u-sub to (easily) solve this problem.
 
Sorry just came to me:
Can I use:
<p^2>=m^2*(d^2(<x>^2)/dx^2) or it doesn't work like that?
nvm...<x>=0 :(
 
Ok, I don't know any U-sub, it will help to know about it anyway- but i understand if you don't want to give me a straight answer to my problem- maybe after monday you can tell me how to do that the "easy way", now I am going through that mess and I am left with something like this:
(1/(1+ib)^(1/2))*(1/(1-ib)^(1/2)) where b=2hat/m and i is imaginary number, do those cancel? I cannot solve this and I tried to use one of those equation solvers on internet and won't do it neither... *the second expression suppose to be a complex conjugate of the first one... please help
 
Well \int_{\infty}^{\infty} e^{-ax ^2} dx = \frac{\sqrt{\pi}}{\sqrt{a}} = f(a) right?

What's f'(a)?

The function you're trying to integrate looks like:

-2 a h^2 \int_{\infty}^{\infty} -e^{-2 a x^2} + 2 a x^2 e^{-2 a x^2} dx

Which looks sort of like b f(a) + c f'(a) if b and c are just constants, doesn't it?
 
well... yes... but i solved it using int(exp(-ax^2)dx=(pi/a)^(1/2) and int(x^2*exp(-ax^2)dx=1/2(pi/a^3)^(1/2) which i believe yields the same output... I kind of understand the logic here... thanks for the tip as this will be easier then memorizing the common integrals :]... the only problem now is that i have an answer looking like this:

<p^2>=h^2*a*(1/(1-2ihat/m)^(1/2))*(1/(1b2ihat/m)^(1/2)) and basically my question is:

(1/(1-ib)^(1/2)*(1/(1+ib)^(1/2))=1?

I know this is multiplying a complex number by its complex conjugate but does this case works since the complex number is under a square root? or maybe i defined wrong complex conjugate for this? the original expression is:

(1/(1-(2ihat/m))^1/2))) what is its complex conjugate? what does this reduce to? it seems like it should be 1 since the real part is 1/1 so 1^2=1 but how this works in this case with above expression? I hope you can understand which part I am having a problem with...
 
Last edited:
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top