GCD of ab,c = 1: Implications for a & b

  • Thread starter Thread starter iamalexalright
  • Start date Start date
  • Tags Tags
    Gcd
iamalexalright
Messages
157
Reaction score
0

Homework Statement


If gcd(ab,c) = 1 then gcd(a,c)=1 and gcd(b,c)=1


2. The attempt at a solution
Well, if gcd(ab,c) = 1 we know that

abk + cl = 1 for some integers k and l

not really sure where to go from here... any hints?
 
Physics news on Phys.org
Also, if gcd(a,c)=1, then am+cn=1 for some integers m and n. Now what if m=bk?

Repeat for the other one.
 
oh wow, that is painfully obvious ... thanks Char. Limit !
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
8
Views
3K
Replies
2
Views
2K
Replies
1
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
11
Views
2K
Back
Top