General Coordinate Transformations

Neitrino
Messages
133
Reaction score
0
Gents,

Could you please help me:

Speaking about General Coordinate Transformations, one speaks always generally. Are there any explicit expressions for General Coordinate Transformations? Like in SR speaking about Lorentz Transfrmations one recalls Lorentz Matrixes.

Maybe I'm not quite precise, but I'm trying to fit my question to my misunderstanding.

Thks
 
Physics news on Phys.org
Nope,nothing but a 4*4 matrix of derivatives in the general case (4 dimensional manifold).

Daniel.
 
Sometimes people ascribe a name to the coordiante transformation associated with an accelerated observer, the "Bogoliubov transforms". I don't think they have a closed form expression, though.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
Back
Top