General Solution for Differential Equation: 6x y^2 -6x + 3 y^2 -3

intenzxboi
Messages
98
Reaction score
0
Give the general solution of:

dy/dx = 6x y^2 -6x + 3 y^2 -3.

No clue how to start. Guessing you would use Bernoulli's equation but i don't see how it is possible to put in the y'(x) + p(x)y(x) = q(x) y(x)^n form.
 
Physics news on Phys.org
Bernoulli Equation

\frac{dy}{dx} = f(x)y+g(x)y^k

y^{1-k}=y_1 + y_2

where

\phi(x) = (1-k)\int f(x) dx

y_1 = Ce^\phi

y_2 = (1-k)e^\phi \int e^{-\phi} g(x) dx
 
Actually don't bother, you can rearrange to get this:

\frac{dy}{dx} = (6x+3)(y^2-1)

you can take it from there, no?
 
Yes i can thank you
 
actually I am still having trouble do i still use the bernoulli method?

so it is a simple separation problem?
 
Sorry I didn't realize you replied.

\frac{dy}{dx} = (6x+3)(y^2-1)


\int \frac{dy}{y^2-1} = \int (6x+3) dx


\frac{1}{2}log\left(\frac{1-y}{1+y}\right) = 3x^2+3x + C


\sqrt{\frac{1-y}{1+y}} = Ae^{3x^2+3x}


y=\frac{1-Ae^{6x^2+6x}}{1+Ae^{6x^2+6x}}


Something like this I think?
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top