General Solutions to a Linear System

HeartSoul132
Messages
58
Reaction score
0
Physics news on Phys.org
That Wiki page is badly written (ever heard the saying "free stuff is often work exactly what you paid for it"?)

The homogeneous solution can be more general than just scalar multiples of a single solution. It can be any scalar multiples of several independent solutions.

For example consider the equation system (1 equation with 3 variables)
x + 2y + 3z = 6

The homogeneous equation is
x + 2y + 3z = 0

Two independent homogeneous solutions of this are
x = 2, y = -1, z = 0
x = 3, y = 0, z = -1

They are called "independent" because one of them is NOT a multiple of the other.

The general homogenous solution is the sum of multiples of each independent solution, which is
x = 2A + 3B, y = -A, z = - B
where A and B are two arbitrary constants.

A particular solution of
x + 2y + 3z = 6
is x = 1, y = 1, z = 1

You can't muliply the particular solution by 2 (or any other factor), because
1 + 2.1 + 3.1 = 6
but
2 + 2.2 + 3.2 is not equal to 6.

The general solution is therefore
x = 1 + 2A + 3B, y = 1 - A, z = 1 - B

Note, the particular solution is not unique, but the difference between two particular solutions is always a multiple of the homogeneous solution.

For example
x = 6, y = 0, z = 0 is another particular solution.

The difference between that and
x = 1, y = 1, z = 1
is
x = 5, y = -1, z = -1
which is equal to the homogeneous solution when A = 1 and B = 1.

So, the solution sets written using different particular solutions might appear to be different, but they are really the same because they both represent the same infinite set of solutions to the equations.
 
AlephZero said:
That Wiki page is badly written (ever heard the saying "free stuff is often work exactly what you paid for it"?)

The homogeneous solution can be more general than just scalar multiples of a single solution. It can be any scalar multiples of several independent solutions.

For example consider the equation system (1 equation with 3 variables)
x + 2y + 3z = 6

The homogeneous equation is
x + 2y + 3z = 0

Two independent homogeneous solutions of this are
x = 2, y = -1, z = 0
x = 3, y = 0, z = -1

They are called "independent" because one of them is NOT a multiple of the other.

The general homogenous solution is the sum of multiples of each independent solution, which is
x = 2A + 3B, y = -A, z = - B
where A and B are two arbitrary constants.

A particular solution of
x + 2y + 3z = 6
is x = 1, y = 1, z = 1

You can't muliply the particular solution by 2 (or any other factor), because
1 + 2.1 + 3.1 = 6
but
2 + 2.2 + 3.2 is not equal to 6.

The general solution is therefore
x = 1 + 2A + 3B, y = 1 - A, z = 1 - B

Note, the particular solution is not unique, but the difference between two particular solutions is always a multiple of the homogeneous solution.

For example
x = 6, y = 0, z = 0 is another particular solution.

The difference between that and
x = 1, y = 1, z = 1
is
x = 5, y = -1, z = -1
which is equal to the homogeneous solution when A = 1 and B = 1.

So, the solution sets written using different particular solutions might appear to be different, but they are really the same because they both represent the same infinite set of solutions to the equations.

Thank you for the reply. So, if P is a solution to the original (or some point), and H is a homogeneous solution, the general set of solutions could be written as P + H , but not something like P-H or P+2H?
 
If H is the general solution, including undetermined constants, to the homogeneous equations, then the general solution to the non-homogeneous equations is of the form P+ H. Because you could always include "-1" or "2" in the coefficients for the general solution, that includes "P- H" and "P+ 2H".
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top