Generalization of the bohr rule for harmonic oscillators

uppiemurphy
Messages
5
Reaction score
0

Homework Statement



The generalization of the bohr rule to periodic motion more general than circular orbit states that:
p.dr = nh = 2∏nh(bar).

the integral is a closed line integral and the bolded letters represent vectors.

Using the generalized, show that the spectrum for the one-dimensional harmonic oscillator, for which E = p2/2m + mw2x2/2 is E = nh(bar)w.

Homework Equations



2∏x = nλ, px = nh(bar)

The Attempt at a Solution



Basically I know how to get E = nh(bar)w for a harmonic oscillator without using integrals, but I'm confused as to how to express E as an integral which is what I assume they're asking for.

I know that the total energy of the system when the spring is fully stretched is Etot = mw2x2/2. Do I somehow have to write this in terms of momentum and then integrate? I'm probably missing something fairly obvious here, but how would I write that in terms of P?
 
Physics news on Phys.org
Hello, uppiemurphy.

It's not that you need to express E as an integral. Rather, you need to express the result of the integraton ∫pdx in terms of E. The quantization of E will then come from the condition ∫pdx = nh.

To perform the integration ∫pdx you'll need to express p as a function of x for a specific energy E. Note E = KE + PE. See if you can express KE in terms of p and PE in terms of x. [Edit: I see that the expression for E in terms of p and x is already given in the problem. Use it to get p as a function of x so you can do the integration.]
 
Last edited:
I'm just confused as to what to do with E mainly... when I isolate my expression for p I'm left with p = sqrt(2mE-m^2w^2x^2) how do I integrate this when I have E in my expression for p?
 
E is just a constant of the motion. So, you have ## p = \sqrt{a-bx^2}## where a and b are constants.
 
I don't see how that integral would yield the correct answer at all though... You end up with a pretty complicated expression that is difficult to simplify
 
nevermind I got it! thank you for your help!
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top