Generating novel yet concise sequences with + and x

  • Thread starter Thread starter Loren Booda
  • Start date Start date
  • Tags Tags
    Novel Sequences
Loren Booda
Messages
3,108
Reaction score
4
Choose two whole numbers, say 2 and 1.

Add them and yield 3; multiply them and yield 2.

Repeat using those new numbers.

3+2=5; 3x2=6

5+6=11; 5x6=30

11+30=41; 11x30=330

41+330=371; 41x330=13530 etc.

Have such sequences been explored before? Their generation is relatively simple, with fundamental operations in an abbreviated algorithm.
 
Mathematics news on Phys.org
One interesting thing is that, if the two initial numbers are coprime, the subsequent pairs will continue to be coprime: if gcd(a,b)=1, then gcd(a+b,a) = gcd(a+b,b) = 1, and thus gcd(a+b,ab)=1.

As the right-hand number is the product of *all* the previous numbers on the left (times the first number on the right), it follows that each new left-hand number will exhibit a new prime number in its factorization, not seen in any of the previous left- numbers... which is yet another way of proving that there are infinite primes.
 
Last edited:
Whoa, Dodo! Thank you for your insightful analysis.

It makes me want to create more.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top