Geometric phase of a parallel transport over the surface of a sphere

lld212
Messages
1
Reaction score
0
I have this question on the calculation of the geometric phase (Berry phase) of a parallel transporting vector over the surface of a sphere, illustrated by Prof. Berry for example in the attached file starting on page 2.
The vector performing parallel transport is defined as ψ=(e+ie')/√2,
satisfying the parallel transport law, Imψ*=0.
Then another local basis was defined, n(r)=(u(r)+iv(r))/√2,
and ψ=n(r)exp(-iα).
Together the geometric phase (or so called anholonomy) is given as
α(C)=Im∫Cn*dn.

I can't see the difference between n and ψ here, except for a phase factor α. I think both of them performing the same parallel transport with α being constant. But why
Imψ*=0 while Imn*dn≠0, even with the latter being a gauge of the geometric phase?

Thanks in advance.
 

Attachments

Physics news on Phys.org
The phase is local, expressed as ##\alpha=\alpha(\mathbf{t})##, where ##t## is a parameter on the path. You should be able to compute that ## \mathrm{Im}\mathbf{n}^* \cdot d\mathbf{n} = d\alpha##.
 
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...

Similar threads

Back
Top