MHB Geometry Challenge: Prove $PT+PU\ge 2\sqrt{2}p$

Click For Summary
The discussion revolves around proving the inequality \( PT + PU \ge 2\sqrt{2}p \) for a square \( PQRS \) with side length \( p \), where points \( A \) and \( B \) are located on sides \( QR \) and \( RS \) respectively, forming a \( 45^\circ \) angle at point \( P \). Participants express appreciation for each other's contributions, highlighting the clarity and completeness of arguments presented. One user acknowledges a previous error and emphasizes the importance of accurate reasoning in geometric proofs. The conversation includes sharing alternative solutions to the problem. The focus remains on collaborative problem-solving within the geometry challenge.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Suppose that $PQRS$ is a square with side $p$. Let $A$ and $B$ be points on side $QR$ and $RS$ respectively, such that $\angle APB=45^{\circ}$. Let $T$ and $U$ be the intersections of $AB$ with $PQ$ and $PS$ respectively. Prove that $PT+PU\ge 2\sqrt{2}p$.
 
Mathematics news on Phys.org
anemone said:
Suppose that $PQRS$ is a square with side $p$. Let $A$ and $B$ be points on side $QR$ and $RS$ respectively, such that $\angle APB=45^{\circ}$. Let $T$ and $U$ be the intersections of $AB$ with $PQ$ and $PS$ respectively. Prove that $PT+PU\ge 2\sqrt{2}p$.
let $QA=QT=SU=SB=x$
where :$0<x<p$,then :$\angle APB=45^o$
by using $AM\geq GM$
if we can find $0<x<p$ and
$PT+PU=2(p+x)\geq 2\sqrt 2 p---(1)$ then the proof is done
the solution of (1) $x=(\sqrt 2-1)p$
 
Last edited:
Let $$\angle{QPA}=\angle{BPS}=22.5^{\circ}$$. Let $$V$$ be the intersection of $$\overline{PR}$$ and $$\overline{AB}$$. Note that $$\overline{PT}=\overline{PU}$$.

$$\triangle{AQT}\cong\triangle{AVR}\cong\triangle{BVR}\cong\triangle{BSU}$$ so $$\frac{\overline{PT}\cdot\overline{PU}}{2}=p^2$$.

$$\tan(22.5)=\frac{\overline{QA}}{p}=\sqrt{2}-1\implies\overline{PT}=\sqrt2p\implies\overline{TU}=2p$$.

$$\left(\overline{PT}+\overline{PU}\right)^2=\overline{PT}^2+4p^2+\overline{PU}^2=\overline{TU}^2+4p^2=8p^2\implies\overline{PT}+\overline{PU}=2\sqrt2p$$

Now, for any acceptable configuration of the problem:

$$\frac{\overline{PT}}{\overline{PU}}+\frac{\overline{PU}}{\overline{PT}}\ge2$$ (I can provide a proof of this, if necessary).

$$\frac{\overline{PT}^2+\overline{PU}^2}{\overline{PT}\cdot\overline{PU}}\ge2$$

$$\left(\overline{PT}+\overline{PU}\right)^2\ge4\left(\overline{PT}\cdot\overline{PU}\right)$$

with equality when $$\overline{PT}=\overline{PU}$$ hence

$$\overline{PT}+\overline{PU}\ge2\sqrt2p$$.
$$\text{ }$$
 
Hi Albert and greg1313,

Very well done! :cool: And thanks for participating!
 
I made an error in my post above. It's corrected below.

Let $$\angle{QPA}=\angle{BPS}=22.5^{\circ}$$. Let $$V$$ be the intersection of $$\overline{PR}$$ and $$\overline{AB}$$. Note that $$\overline{PT}=\overline{PU}$$.

$$\triangle{AQT}\cong\triangle{AVR}\cong\triangle{BVR}\cong\triangle{BSU}$$ so $$\frac{\overline{PT}\cdot\overline{PU}}{2}=p^2$$.

By the AM-GM inequality we have

$$\frac{\overline{PT}+\overline{PU}}{2}\ge\sqrt{\overline{PT}\cdot\overline{PU}}\implies\overline{PT}+\overline{PU}\ge2\sqrt2p$$

Hopefully that's correct. :)
 
Hi greg1313!

First off, I want to say sorry for I hastily said something that is purely wrong yesterday and I had deleted that nonsense reply. I have read your second submission thoroughly and yes, your second post is more easy to follow and your argument is complete.

Here is the solution of other that I want to share with MHB:
View attachment 4347
The circle centered at $P$ with radius $p$ has a tangent at $Q$, $S$. Let $AB'$ be the tangent at $H$ to the above circle. Then $PA$ is the bisector of $\angle QPH=\alpha$, $PB'$ is the bisector of $\angle HPS=\angle \beta$, and hence we have $\angle APB'=45^{\circ}$ because $\alpha+\beta=90^{\circ}$.

From this, we conclude that $B'=B$.

Thus,

$\begin{align*}PT+PU&=\dfrac{PH}{\cos \alpha}+\dfrac{PH}{\cos \beta}\\&=p\left(\dfrac{1}{\cos \alpha}+\dfrac{1}{\cos \beta}\right)\\& \ge p\left(\dfrac{2}{\sqrt{\cos \alpha \cos \beta}}\right)\\& \ge p\left(\dfrac{2}{\sqrt{\cos \alpha \cos (90^{\circ}-\alpha)}}\right)\\& \ge p\left(\dfrac{2}{\sqrt{\cos \alpha \sin \alpha}}\right)\\& \ge p\left(\dfrac{2\sqrt{2}}{\sqrt{\sin 2\alpha}}\right)\\& \ge 2\sqrt{2}p\end{align*}$

Equality holds when $\alpha=\beta$, i.e. $\angle QPA=45^{\circ}$
 

Attachments

  • geometry challenge.JPG
    geometry challenge.JPG
    8.2 KB · Views: 119
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
880
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
3
Views
2K