Geometry Challenge: Prove $PT+PU\ge 2\sqrt{2}p$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Geometry
Click For Summary

Discussion Overview

The discussion revolves around a geometric challenge involving a square and specific points within it. Participants are tasked with proving the inequality \(PT + PU \ge 2\sqrt{2}p\), where \(PT\) and \(PU\) are distances related to points \(T\) and \(U\) formed by intersections with the square's sides.

Discussion Character

  • Mathematical reasoning, Debate/contested

Main Points Raised

  • Participants describe the configuration of square \(PQRS\) with side length \(p\) and points \(A\) and \(B\) on sides \(QR\) and \(RS\) respectively, forming an angle of \(45^{\circ}\) at point \(P\).
  • There is a reiteration of the problem statement by multiple participants, indicating a focus on the proof of the stated inequality.
  • One participant acknowledges a previous error in their reasoning and expresses appreciation for a clearer argument presented by another participant.
  • A participant indicates they will share a solution, suggesting ongoing exploration of the problem.

Areas of Agreement / Disagreement

The discussion does not appear to reach a consensus, as participants express differing levels of understanding and clarity regarding the proof. Multiple viewpoints and approaches to the problem are present.

Contextual Notes

Some participants have acknowledged previous misunderstandings or errors in their contributions, which may affect the clarity of the discussion. The exact mathematical steps and assumptions necessary for the proof remain unresolved.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Suppose that $PQRS$ is a square with side $p$. Let $A$ and $B$ be points on side $QR$ and $RS$ respectively, such that $\angle APB=45^{\circ}$. Let $T$ and $U$ be the intersections of $AB$ with $PQ$ and $PS$ respectively. Prove that $PT+PU\ge 2\sqrt{2}p$.
 
Mathematics news on Phys.org
anemone said:
Suppose that $PQRS$ is a square with side $p$. Let $A$ and $B$ be points on side $QR$ and $RS$ respectively, such that $\angle APB=45^{\circ}$. Let $T$ and $U$ be the intersections of $AB$ with $PQ$ and $PS$ respectively. Prove that $PT+PU\ge 2\sqrt{2}p$.
let $QA=QT=SU=SB=x$
where :$0<x<p$,then :$\angle APB=45^o$
by using $AM\geq GM$
if we can find $0<x<p$ and
$PT+PU=2(p+x)\geq 2\sqrt 2 p---(1)$ then the proof is done
the solution of (1) $x=(\sqrt 2-1)p$
 
Last edited:
Let $$\angle{QPA}=\angle{BPS}=22.5^{\circ}$$. Let $$V$$ be the intersection of $$\overline{PR}$$ and $$\overline{AB}$$. Note that $$\overline{PT}=\overline{PU}$$.

$$\triangle{AQT}\cong\triangle{AVR}\cong\triangle{BVR}\cong\triangle{BSU}$$ so $$\frac{\overline{PT}\cdot\overline{PU}}{2}=p^2$$.

$$\tan(22.5)=\frac{\overline{QA}}{p}=\sqrt{2}-1\implies\overline{PT}=\sqrt2p\implies\overline{TU}=2p$$.

$$\left(\overline{PT}+\overline{PU}\right)^2=\overline{PT}^2+4p^2+\overline{PU}^2=\overline{TU}^2+4p^2=8p^2\implies\overline{PT}+\overline{PU}=2\sqrt2p$$

Now, for any acceptable configuration of the problem:

$$\frac{\overline{PT}}{\overline{PU}}+\frac{\overline{PU}}{\overline{PT}}\ge2$$ (I can provide a proof of this, if necessary).

$$\frac{\overline{PT}^2+\overline{PU}^2}{\overline{PT}\cdot\overline{PU}}\ge2$$

$$\left(\overline{PT}+\overline{PU}\right)^2\ge4\left(\overline{PT}\cdot\overline{PU}\right)$$

with equality when $$\overline{PT}=\overline{PU}$$ hence

$$\overline{PT}+\overline{PU}\ge2\sqrt2p$$.
$$\text{ }$$
 
Hi Albert and greg1313,

Very well done! :cool: And thanks for participating!
 
I made an error in my post above. It's corrected below.

Let $$\angle{QPA}=\angle{BPS}=22.5^{\circ}$$. Let $$V$$ be the intersection of $$\overline{PR}$$ and $$\overline{AB}$$. Note that $$\overline{PT}=\overline{PU}$$.

$$\triangle{AQT}\cong\triangle{AVR}\cong\triangle{BVR}\cong\triangle{BSU}$$ so $$\frac{\overline{PT}\cdot\overline{PU}}{2}=p^2$$.

By the AM-GM inequality we have

$$\frac{\overline{PT}+\overline{PU}}{2}\ge\sqrt{\overline{PT}\cdot\overline{PU}}\implies\overline{PT}+\overline{PU}\ge2\sqrt2p$$

Hopefully that's correct. :)
 
Hi greg1313!

First off, I want to say sorry for I hastily said something that is purely wrong yesterday and I had deleted that nonsense reply. I have read your second submission thoroughly and yes, your second post is more easy to follow and your argument is complete.

Here is the solution of other that I want to share with MHB:
View attachment 4347
The circle centered at $P$ with radius $p$ has a tangent at $Q$, $S$. Let $AB'$ be the tangent at $H$ to the above circle. Then $PA$ is the bisector of $\angle QPH=\alpha$, $PB'$ is the bisector of $\angle HPS=\angle \beta$, and hence we have $\angle APB'=45^{\circ}$ because $\alpha+\beta=90^{\circ}$.

From this, we conclude that $B'=B$.

Thus,

$\begin{align*}PT+PU&=\dfrac{PH}{\cos \alpha}+\dfrac{PH}{\cos \beta}\\&=p\left(\dfrac{1}{\cos \alpha}+\dfrac{1}{\cos \beta}\right)\\& \ge p\left(\dfrac{2}{\sqrt{\cos \alpha \cos \beta}}\right)\\& \ge p\left(\dfrac{2}{\sqrt{\cos \alpha \cos (90^{\circ}-\alpha)}}\right)\\& \ge p\left(\dfrac{2}{\sqrt{\cos \alpha \sin \alpha}}\right)\\& \ge p\left(\dfrac{2\sqrt{2}}{\sqrt{\sin 2\alpha}}\right)\\& \ge 2\sqrt{2}p\end{align*}$

Equality holds when $\alpha=\beta$, i.e. $\angle QPA=45^{\circ}$
 

Attachments

  • geometry challenge.JPG
    geometry challenge.JPG
    8.2 KB · Views: 121

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
919
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
3
Views
2K