(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Find the orbit of a planet in a grav. field corresponding to the metric

[tex]d\tau^2=(1+\alpha^2(x^2+y^2))dt^2-(dx^2+dy^2+dz^2)[/tex]

in the newtonian limit with the initial conditions at t=0, x=R, dx/dt=[itex]\beta[/itex],0=y=z=dy/dt=dz/dt where alpha and beta are cositive constants.

2. Relevant equations

The Levi-Civita connexion and the geodesic equations

3. The attempt at a solution

I calculates the connexion coefficients and wrote down the 4 geodesic equations with the proper time as the parameter:

[tex]\frac{d^2t}{d\tau^2}+\frac{2\alpha^2x}{(1+\alpha^2(x^2+y^2))} \frac{dt}{d\tau}\frac{dx}{d\tau}+\frac{2\alpha^2y}{(1+\alpha^2(x^2+y^2))}\frac{dt}{d\tau}\frac{dy}{d\tau}=0[/tex]

[tex]\frac{d^2x}{d\tau^2}+\alpha^2x\left(\frac{dt}{d\tau}\right)^2=0[/tex]

[tex]\frac{d^2y}{d\tau^2}+\alpha^2y\left(\frac{dt}{d\tau}\right)^2=0[/tex]

[tex]\frac{d^2z}{d\tau^2}=0[/tex]

I can solve the 4th equation of course:

[tex]z(\tau)=a\tau +b[/tex]

and if I understand correctly, the newtonian limit means that

[tex]\frac{dx^i}{d\tau}<<\frac{dt}{d\tau}[/tex]

But I don't see how that can be applied here to simplify the equations.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# GR - Find the orbit of the planet

**Physics Forums | Science Articles, Homework Help, Discussion**