Graph of Integral: Find x-coords of Points of Inflection

  • Thread starter Thread starter joess
  • Start date Start date
  • Tags Tags
    Graph Integral
Click For Summary
To find the x-coordinates of points of inflection for the graph of g on the interval (-2, 5), the discussion centers on identifying where the second derivative g''(x) equals zero or does not exist. The initial answers proposed are x=0 and x=3, but there is confusion regarding the justification for including x=3. The tutor argues that x=3 is not a valid inflection point due to a cusp, while the teacher confirms both points but does not provide a clear justification. The key to resolving this lies in understanding the relationship between the derivatives of g and f, and recognizing that inflection points occur where the concavity changes, which may include points where g''(x) is undefined. Clarifying the mathematical justification for differentiability at these points is essential for a complete answer.
joess
Messages
16
Reaction score
0

Homework Statement


2ym93t2.jpg

Find the x-coordinate of each point of inflection of the graph of g on the open interval (-2, 5). Justify your answer

Homework Equations





The Attempt at a Solution


The answer (I think) is x=0 and x=3. Well, the thing is that I asked my tutor how to justify it and he said that it is only x=0 and not 3. But when I asked my teacher for the answer he checked and said it x=0, 3, but he couldn't tell me how to justify it. So now I'm wondering if I'm right or my tutor is.

The reason why I thought it was x=0 and x=3 is because from -2, the area as you move towards 0 is increasing at a greater and greater rate, therefore it's concave up. Then after 0 it's still increasing, but its rate of increase is decreasing, therefore concave down. Then at 2 it starts decreasing but the magnitude of the rate of decrease is still increasing (therefor still concave down) until x=3. Then after 3 it's still decreasing, but the magnitude of the rate is decreasing so it's concave up again. Then at 4 it starts to increase with increasing rate, and so g is still concave up.

But I'm pretty sure that on an exam they want a quick explanation in mathematical terms, not a whole long paragraph like that. My tutor said that because at x=3 there's a cusp so that's not a solution but I don't get why.:confused:
 
Physics news on Phys.org
Your answers are correct - the key lies in understanding two things:

When do inflection points occur in a function?

How are the functions g and f related?

The answer to the first question (it has something to do with derivatives...) will help you answer the second one (along with the 2nd Fundamental Theorem).

Sorry to be so vague, but I want you to figure it out for yourself.
 
Inflection points should occur where g''(x)=0...
And g'(x)=f(x), so g''(x)=f'(x), so they should occur where the slope changes from positive to negative or vice versa?
 
What's your justification that g'(x) is differentiable? Remember, inflection points can happen where g''(x) doesn't exist.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 35 ·
2
Replies
35
Views
3K
Replies
7
Views
2K
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
7
Views
2K
Replies
22
Views
3K