Grating Spacing With Fourier Optics

AI Thread Summary
The discussion focuses on determining the x-spacing for a grating imaged using the 4f method in optics, particularly for an amplitude grating. The user seeks an expression for the spacing of the Fourier transform of the grating, which is suggested to be proportional to f*lambda/b, where b is the slit spacing, f is the lens focal length, and lambda is the wavelength. The transmission function for an amplitude grating is described as T = rect(bx)**comb(ax), leading to a Fourier transform that indicates decreasing slit width or spacing broadens the diffraction pattern. For phase gratings, the transmission function is more complex, but similar principles regarding spacing and pattern broadening apply. The user confirms that the Fourier transform results in a series of spikes with spacing calculated as lambda*f/a.
nanath
Messages
5
Reaction score
0
Just ahead of time, no this is not related to homework or coursework in my case. I am a TA for an optics lab and need to know it so I can help the students in my class.

I am trying to find an expression for the x-spacing for a grating imaged using the 4f method, which is a grating that is 1 focal length away from the first lens, which is then 1f away from the Fourier plane, which is 1f away from the second lens which has a focal length equal to the first, which is finally 1f away from the image plane. Specifically, I am interested in knowing what the spacing is for the Fourier transform of a grating when it passes through a Fourier lens. I've heard it is somehow proportional to f*lambda/b, where b is the spacing between slits in the grating, f is the focal length of the lens and lambda is the wavelength of the laser, but I have not been able to find a source that solves such a problem.

I would appreciate it if you could give me either an equation for the spacing or a more direct method for solving it. So far, the only methods I've found end with a k-space solution and don't try to translate the peaks you would see to actual displacements (x-coordinate).
 
Science news on Phys.org
You haven't mentioned if it's an amplitude or a phase grating. For an amplitude grating (Ronchi ruling), the transmission function can be written as T = rect(bx)**comb(ax), where 'b' is the width of a single "slit" and 'a' the spacing between slits. '**' means convolution, not multiplication, so the transmission function is interpreted as a row of slits of width 'b' with a center-to-center spacing of 'a'. If this is illuminated with a plane wave, the FT is sinc(x'/b)*comb(x'/a), where '*' is multiplication and x' = x/(lambda*f) due to the focal length of the lens and illumination wavelength. This demonstrates that decreasing the slit width and/or spacing broadens the diffraction pattern, and illumination with decreasing wavelength and/or focal length also broadens the pattern.

For a phase grating, the transmission function is now exp(iT) (if the phase grating is a square-wave type, otherwise substitute in your own phase function) and the FT is significantly more complicated and qualitatively different than the amplitude case. Even so, decreasing the width and/or spacing of the phase grating broadens the pattern, etc.

Detailed derivations are easily found:

http://books.google.com/books?id=ow...q=amplitude grating fourier transform&f=false

http://ocw.mit.edu/courses/mechanic...se-sinusoidal-and-binary/MIT2_71S09_lec16.pdf
 
This is an amplitude grating. So just to clarify then, the FT would look, in the spatial domain, like a series of spikes with a sinc function describing their amplitudes from a defined center? Also, the spacing between said spikes would be lambda*f/a?
 
Thread 'A quartet of epi-illumination methods'
Well, it took almost 20 years (!!!), but I finally obtained a set of epi-phase microscope objectives (Zeiss). The principles of epi-phase contrast is nearly identical to transillumination phase contrast, but the phase ring is a 1/8 wave retarder rather than a 1/4 wave retarder (because with epi-illumination, the light passes through the ring twice). This method was popular only for a very short period of time before epi-DIC (differential interference contrast) became widely available. So...
I am currently undertaking a research internship where I am modelling the heating of silicon wafers with a 515 nm femtosecond laser. In order to increase the absorption of the laser into the oxide layer on top of the wafer it was suggested we use gold nanoparticles. I was tasked with modelling the optical properties of a 5nm gold nanoparticle, in particular the absorption cross section, using COMSOL Multiphysics. My model seems to be getting correct values for the absorption coefficient and...
Back
Top