adriank said:
Total energy does not limit kinetic energy. As the masses approach each other, the potential energy
U = -\frac{Gm^2}{2r}
approaches negative infinity. Since total energy is conserved, kinetic energy must approach infinity.
I will make one final attempt to explain about gravitational potential enrgy, even though I expect you will not agree. This may be a bit long, but I hope it is worth your while to read through it with an open mind. First, I believe it is useful to point out where our disagreement is; in other words, let us agree on what points we disagree on.
You are saying that gravitational potential is negative, and is expressed dimensionally as:
-GMm/R
Obviously, as R goes to zero, GPE will go to infinity. (I agree with this)
We also agree that Total energy is conserved. That is, the total energy remains unchanged in any process. We all agree this is true.
In a conservative system, that is, one in which only conservative forces are acting, the total energy is the sum of the PE and KE. When KE is zero, all of the energy is PE and vice versa. This can be seen in a simple pendulum. The gravitational system we are discussing here is a conservative system and we are starting out with zero KE and some fixed amount of PE. For the purpose of this discussion, let us say we are starting out with 100 Joules of PE, which must be equal to the total energy as KE is zero to start with. The number does not matter, as long as we agree it must remain constant throughout at 100 Joules, never more and never less. I think we are in agreement up to this point, but please correct me if I am mistaken.
Now the distance decreases from the starting distance of 1 meter. The PE must increase in Magnitude, according to the math, and is always Negative so it is decreasing. At the same time, the KE must increase, in order for the total energy to remain constant at 100 J.
Now we get into the area where we disagree: According to you, the PE increases to a Negative infinite value, so the KE must increase to a positive infinite value and thay add according to sign convention and the total remains constant.
I disagree right away, because what you are saying means that the KE is going to infinity, which means, according to KE = 1/2 MV^2 that velocity must also be going to infinity. What this clearly says is that the two spheres will come together at infinite velocity and infinite KE!
In other words, under the weak force of gravity, we would have for all intents and purposes a nuclear explosion caused by two spheres coming together in such a way. In fact, if I jump in the air, and return to earth, I should land with infinite energy at an infinite velocity using the exact same mathematics. Obviously, by common sense alone, this is wrong!
But I will not base my disagreement on common sense alone. Here is my explanation, and I hope you will take the time to read and try to understand what I am saying. Yes, PE is always negative, and it does increase towards negative infinity as radius goes toward zero. The plot is a hyperbola. But this hyperbola is so not very useful at small values of radius since all PE are very close to negative infinity. It would not be useful at all for calculating the PE of gravity at the surface of the earth, for example. So physicists have linearized the gravitational potential and potential energy to make it more useful for everyday experience, which includes our consideration of two bodies separated by only one meter. The method of linearization is this:
PE2 – PE1 = - GM/(R + h) – ( - GM/R ) this is the Difference between two potentials where h is the difference in R.
Now we need to do a bit of algebraic simplification: = GM ( 1/R – 1/(R + h)
By LCD we get: = GMh/R(R + h) the final step is to drop the h as it is insignificant to the R.
And we have finally, GMh/R^2 which is gravitational acceleration multiplied by h and is
Gravitational potential and reduces to gh. For GPE just multiply by m and we have our familiar
Mgh. Which is the familiar linearized form of GPE. This is much more useful than using the more general form –GMm/R^2. And, because it is a difference in potential energy,, it is usually treated as a positive number. Although sign convention can be followed if the problem calls for it.
What this all boils down to for the case at hand of two 1 kg spheres at a distance of 1 meter:
g’ = Gmm/R^2 = G = 6.67 E-11 m/s^2
GPE (initial) = mg’h = G = 6.67 E-11 Joules
Total energy = PE (initial) = 6.67 E-11 Joules and is Constant
KE = (Total energy – PE ) at all times
At a distance of zero meters, when the spheres are touching, PE = mg’h and is also zero.
Thus KE is equal to 6.67 E -11 Joules and is shared equally by the two spheres.
Each sphere has 3.335 E-11 Joules of KE which = 1/2 MV^2
So Max possible velocity = 8.167 E-6 m/s which is considerably less than infinity!
The two spheres will pull together very slowly, by your own calculation, in a time of 28 hours.
At no time will velocity be infinite of KE be infinite. The KE cannot exceed the total energy that the system started with!
I sense that as a mathematical purist you may have trouble accepting this, but I assure you that such linearizations are done in physics all the time. I recommend
Physics by K.R. Atkins for more such examples.