Gravitational Energy in GR: Energy Conservation Explained

david316
Messages
77
Reaction score
4
If you view free fall as an inertial frame and therefore items at "rest" on the Earth's surface are accelerating away from the centre of mass I do not understand how energy is conserved. Taking this view, relative to the free fall frame the items will be gaining velocity which implies that the kinetic energy will be increasing. Can someone explain to me why this wrong. Thanks a lot.
 
Physics news on Phys.org
david316 said:
Taking this view, relative to the free fall frame the items will be gaining velocity which implies that the kinetic energy will be increasing.

Yes, that's true. Energy is frame-dependent. The items are gaining kinetic energy relative to the free-fall frame, but not relative to a frame that is fixed to the Earth.
 
That makes sense... I think. It makes a little sense to me if you consider there is no absolute frame of reference in the universe. Followup question, if I use E^2 = (pc)^2 + (mc^2)^2 and since velocity and hence momentum are increasing relative to freefall does that mean the mass of the item on Earth will be getting lighter.
 
david316 said:
if I use E^2 = (pc)^2 + (mc^2)^2 and since velocity and hence momentum are increasing relative to freefall does that mean the mass of the item on Earth will be getting lighter.

No. Velocity increases in the freely falling frame, but so does energy. In a frame fixed to the Earth, velocity is zero and energy is constant. In both cases, ##m## remains constant.
 
That makes sense. Thanks a lot.
 
Note also that energy itself is a bit of a tricky concept in GR.

Locally, it is frame variant, as mentioned by Peter Donis (energy and momentum form a four-vector). However, locally at least it is conserved (stress energy tensor has no divergence).

Globally, it is not even defined in general, let alone conserved. This is due to the difficulty in adding different vectors in different locations in a curved space.

Here is a good overview of the issues.
http://math.ucr.edu/home/baez/physics/Relativity/GR/energy_gr.html
 
  • Like
Likes bcrowell
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top