Gravitational field vs. acceleration due to gravity

AI Thread Summary
The discussion clarifies the distinction between gravitational fields and acceleration due to gravity, emphasizing that they are effectively the same in Newtonian mechanics due to the equivalence of inertial and gravitational mass. This equivalence is analogous to the relationship between electric fields and electric forces, where gravitational mass acts as the "gravitational charge." While the explanation holds true in a non-relativistic context, there are complexities introduced in General Relativity, where the sources of gravitational fields include energy and momentum rather than just mass. The gravitational field is reinterpreted in GR as the curvature of spacetime, reflecting a deeper understanding of gravity. Overall, the conversation highlights the foundational principles of gravitational theory and its implications in different frameworks.
thecommexokid
Messages
68
Reaction score
2
"Gravitational field" vs. "acceleration due to gravity"

So I'm pretty sure the following paragraph is all true. Do the citizens of PhysicsForums agree? Please confirm and/or correct and/or clarify, as needed.

In electostatics, the electric field E is a completely different quantity than the acceleration due to an electric force aE, which you could calculate as aE = qE E / m (where qE E is the electric charge). But the gravitational field Φ and the acceleration due to gravitational force aG are the same thing. By analogy with the electric case, aG = qG Φ / m, but qG, the "gravitational charge", is itself just m. So it all comes down to the familiar fact that inertial mass and gravitational mass are the same thing...which is an unexplained coincidence in the context of Newtonian mechanics (though it possibly has firmer footing in general relativity).
 
Last edited:
Physics news on Phys.org


Completely correct (excpet for the slight typo in the first parentheses :-p). This happy coincidence you speak of is commonly called the equivalence of inertial and gravitational mass; i.e. that the m appearing in Newton's Second Law is the same m that appears in Newton's Law of Universal Gravitation. In the electrostatic analogy, we could think of the "electric charge" as an "electric mass," which is completely unrelated the inertial/gravitational mass. Of course, this is completely equivalent to your explanation.

One word of warning, the above is true when you formulate gravity as a non-relativistic field theory in analogy to electrostatics. There might be some subtleties when you go into proper General Relativity (I'm truthfully not sure); but never mind that since we're not posting in the Relativity Forums. :smile:
 


Yep, it's all fine within the non-relativistic (Newtonian) approximation.

Concerning General Relativity (GR) (which is a classical theory after all and thus belongs also to this subforum although there is a more specialized one on relativity), one should emphasize that here the sources of the gravitational field is not the mass distribution but all kinds of energy and momentum, to which according to GR the gravitational field couples universally. That comes directly out of the application of the here discussed equivalence principle, leading to a geometrical reinterpretation of the gravtiational field as the curvature of the four-dimensional pseudo-Riemannian space-time manifold.
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top