Gravitational Waves: Were They Stronger Long Ago?

Gerinski
Messages
322
Reaction score
15
In order to detect gravitational waves at our present time and location, aLIGO has required a mind-boggling sensitivity, if I understand well it can detect variations in length in the order of 1/10,000 of the diameter of a proton.

But space has stretched a lot during the universe's history. If I am correct in assuming that gravitational waves redshift in the same way as EM waves, one should expect that the same sort of gravitational waves we have observed now as so weak, if they happened 8 billion years ago, and therefore closer to us, when space was much more "compact", might have been much more easily detectable, they had not yet redshifted. They might have caused a length variation which was detectable more easily back then, and it's only because space has stretched so much that they are so difficult to detect now.

Is this reasoning correct?

And if so, what could that mean if gravitational waves had "macroscopic" effects very early in the universe, because space was still very "compact"? Could gravitational waves have had any influence in the way the universe developed? I mean for example, the passing of a gravitational wave in our epoch on a complex molecule will not change anything, the distance variations it causes are far too small for any interactions between the subatomic particles to vary.

But let's say very early in the universe, a very strong gravitational wave passed a complex molecule and the distance variation it caused between its subatomic particles was enough for the particles to lose their bonding, they became loose from each other and the molecule was broken by the gravitational wave.

Does this make any sense?

TX !
 
Physics news on Phys.org
The gravitational waves detected by LIGO were at a redshift of z=0.09, so they have only redshifted by 9% since they were emitted.
 
Like any spherical wave pattern, the gravitational waves aLIGO detected had an intensity that fell off as ##1/r^2##, because the energy is getting diluted over a larger and larger area. There is also a cosmological Doppler shift on top of this, but as phyzguy pointed out, that's a relatively small effect.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
Back
Top