B Gravitons: Relationship to Space-Time & Black Holes

  • B
  • Thread starter Thread starter Kairos
  • Start date Start date
  • Tags Tags
    Gravitons Work
Kairos
Messages
182
Reaction score
16
1) What is the relationship between gravitons and the curvature of space-time?
2) As gravitons move at speed c, the curvature of space-time is not instantaneous either, so how the curvature sets in or disappears gradually (for theoretical example if mass disappears suddenly upon collision of matter and antimatter stars)
3) How gravitons, contrary to light photons, can escape black holes and thus from the space-time trap that they are supposed to create themselves?
4) What experimental or theoretical observation has necessitated to postulate the existence of these interaction particles?
 
Physics news on Phys.org
I just saw under my question that the subject has already been addressed, I will read the old answers...
 
Kairos said:
1) What is the relationship between gravitons and the curvature of space-time?
2) As gravitons move at speed c, the curvature of space-time is not instantaneous either, so how the curvature sets in or disappears gradually (for theoretical example if mass disappears suddenly upon collision of matter and antimatter stars)
3) How gravitons, contrary to light photons, can escape black holes and thus from the space-time trap that they are supposed to create themselves?
4) What experimental or theoretical observation has necessitated to postulate the existence of these interaction particles?
1) Gravitons are a hypothetical particle that mediate the gravitational interaction in theories of quantum gravity.

2) Spacetime curvature is caused by stress-energy, which is a conserved quantity. E.g. if a particle and anti-particle annihilate, then energy is conserved, even if particle rest mass is not.

3) They don't "escape black holes". This seems to be a common misconception. There are several thread on this.

4) The other fundamental interactions have a mediator particle. That's the role the graviton would play.
 
thanks for your corrections on points 2 and 3!
do quantum gravity theories connect space-time curvature and gravitons?
 
Kairos said:
thanks for your corrections on points 2 and 3!
do quantum gravity theories connect space-time curvature and gravitons?
How GR and curved spacetime emerges from a theory of QG varies depending on the particular theory of QG. This page gives an introduction and a list of candidate theories:

https://en.wikipedia.org/wiki/Quantum_gravity
 
  • Like
Likes vanhees71 and Kairos
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top