HarryWertM said:
So back to my original question - is there length contraction and/or mass inflation in GR - Altabeh said:
Then there must be no such things as length and mass, or they do not contract and inflate.
Which?
Are you by chance thinking of the old sci-fi standby, the "blueshifted 'front' of a near-c 'craft', versus the apparent long redshifted 'tail' of it? That is an effect perceived by the observer, and doesn't imply a real change in length or mass. In essence, you're seeing light "stack" in the front, and "extend" in the rear, but that's the LIGHT, not the "craft".
I'm not even sure what you mean by "mass inflation", unless you think that the mass of an object approaching 'c' becomes "infinite", which is a common misconception. Once again, you have to remember which effects are the result of a change in something, and which are merely observational artifacts.
@Altabeh: Yes, theories usually evolve from the simple to the more complex; and that new theory should incorporate the old, in which case from one point of view SR is clearly a subset of GR. That said, even though GR is the framework which explains SR and more, one did not evolve as a subset of the other, but rather GR is an expansion and extension (among others things) of GR.
As I said, this is a semantic issue, with two possible views on the subject. I'll admit that mine is less useful in this context, but also it won't mislead newcomers to the subject as to how the theories were developed. To me, a subset represents a group "B" containing elements derived or taken from group "A". For that to occur, group A needs to exist for a subset to emerge, rather than B leading to A and because A encompasses B, it's being called a subset.
As I said earlier, I would call them "SR and GR", not "GR and its subset", or "SR and its superset". There is no context in which identifying them as two theories, one leading to another, isn't preferable to "subset"