Gravity & Everest: Why Can't We Go Higher Than 10km?

  • Thread starter Thread starter Lisa!
  • Start date Start date
  • Tags Tags
    Gravity
AI Thread Summary
Mountains on Earth are limited in height due to the strength of rocks and the processes that form them, such as volcanism and plate tectonics. As mountains grow taller, their weight can cause them to collapse, and erosion counteracts their growth. The Earth's crust floats on a partially molten layer called the asthenosphere, which can lead to sinking if mountains exceed a certain height. While there is no theoretical limit to mountain height, factors like buoyancy and geological processes impose practical constraints. Continuous tectonic activity, like the movement of the Indian plate, can contribute to mountain growth, but overall, the combination of these factors restricts heights beyond approximately 10 kilometers.
Earth sciences news on Phys.org
Don't think of the Earth as a solid sphere. It's only solid on the surface. For the most part, the Earth is a molten ball of rock. Tall structures weigh a lot. Think about ice flows. There's some terrain to them, but structures in the thousands of feet do not exist. They just sink lower as their weight increases.

Solid rock on top of liquid rock acts similarly, but structures can grow into the 10's of thousands of feet.

Mathamatically... There's some formula for what percentage of an iceberg is above water, and what percentage is below water. The formula is derived from the density of frozen water compared to the density of liquid water. With knowledge of the densities of liquid rock vs. solid rock, a similar formula should exist.

Just my guess... :rolleyes:
 
Last edited:
It's possible to have higher peaks than Mt.Everest.Incidentally,there used to be said that,due to the continuous advancement of the Indian tectonic plate into the Asian continent (subduction (?)),Mt.Everest would be not only growing taller,but also moving its peak towards NE (i.e.into China).

I don't know whether the latest accurate geological info still claim this thing.

Daniel.
 
Several levels of explanation (science, BTW, not maths; the math is just a tool):
- real mountains are made of real rocks; rocks can only be so strong, you put more rocks on top of a (max height) mountain and it collapses
- mountains on Earth can only be made by a small number of geophysical processes (e.g. volcanism, plate tectonics); there are limits on how fast each process can make mountains, bearing in mind that there are processes which wear mountains down (e.g. erosion), and this leads to a limit on how high a mountain can be
- Earthly mountain building processes in turn are driven by the bulk composition of the Earth (esp the lack of H and He, and abundance of radionuclides) and its history (esp accretion and the collision that created the Moon); these limit the strength of volcanism and plate tectonics today

Note that if the main 'mountain building' process found on most solid bodies in the solar system were primary on Earth (i.e. that we had essentially no erosion or plate tectonics), then we'd be talking about craters and basins, like Mare Orientale, Caloris, or Valhalla.
 
I think there may be another limitation also, I'm not sure how much of an influence it is. As Tony mentioned, the crust floats on the asthenosphere, a partially molten layer of the mantle. Beneath mountain ranges the crust protrudes into the asthenosphere in order to maintain bouyancy. I would think that at a certain depth this crust begins to melt, and the mountains will sink.
Just a thought, not sure if I'm right.
 
For starters the Astenosphere is not nearly molten let alone partially molten. It's just a wee bit more ductile than the environment like the crust and the upper mantle. The lower mantle is even more plastic again.

As far as I know, there is no theoretical limit on the hight of a mountain. Those things get a bit too complicated to model mathematically. But most factors are mentioned. Buoyancy is probably prevailing. Try to think of Earth as being fluid like water. Due to rotation and gravity forces it will attain a geodic shape, now, throw an ice cube on it and there is your mountain, the emersed part of the ice. On million years time scale Earth behaves like fluid. As the crust is much less dense than the mantle it is assumed that, in equilibrium, the dept of the crust is reflected on it's elevation, like the floating ice cube. Most of the ice is submerged. In analogy, oceanic crust is assumed to be very thin. Continental crust is much thicker to have the land float higher like the ice cube.

http://mediatheek.thinkquest.nl/~ll125/en/crust.htm

Now, if two tectonic plates collide, one will subduct, the other will pass overhead but the local thickness of the (light) double crusts increases significantly, playing bouyant ice cube on the (heavy) ductile mantle, consequently the mountain range is build. And mountains literally have deep roots of crust material (presumably).

What would limit that mountain buiklding process? Outflowing of the mountain like ice sheets do? Erosion? It's all speculation.
 
Last edited by a moderator:
Hello, I’m currently writing a series of essays on Pangaea, continental drift, and Earth’s geological cycles. While working on my research, I’ve come across some inconsistencies in the existing theories — for example, why the main pressure seems to have been concentrated in the northern polar regions. So I’m curious: is there any data or evidence suggesting that an external cosmic body (an asteroid, comet, or another massive object) could have influenced Earth’s geology in the distant...
Thread 'The Secrets of Prof. Verschure's Rosetta Stones'
(Edit: since the thread title was changed, this first sentence is too cryptic: the original title referred to a Tool song....) Besides being a favorite song by a favorite band, the thread title is a straightforward play on words. This summer, as a present to myself for being promoted, I purchased a collection of thin sections that I believe comprise the research materials of Prof. Rob Verschure, who at the time was faculty in the Geological Institute in Amsterdam. What changed this...

Similar threads

Replies
42
Views
6K
Replies
49
Views
4K
Replies
22
Views
34K
Replies
5
Views
2K
Replies
20
Views
4K
Replies
7
Views
1K
Replies
12
Views
2K
Back
Top