I Is Gravity Invariant During Motion?

bahamagreen
Messages
1,015
Reaction score
52
In simple examples of throwing a ball upward and observing it's arc, the calculations include a constant vector acting downward on the ball throughout it's flight. Without getting into the complications of that vector changing magnitude with altitude, it does not change with respect to the speed of the ball... it is a constant acceleration in the direction of the field.

So when the ball is at peak altitude v = 0 that vector is g = -x
And, when the ball is moving in flight that vector is still g = -x

Now that does not seem so strange because as a geodesic perspective the local curvature is what it is despite the apparent change in the ball's speed. Is the ball's 4speed locally constant?

But since the ball is in free fall can I take it as an inertial reference frame and imagine the Earth receding, pausing, and approaching, because where would the energy come from for it to accelerate like that? But in either case, it then looks like the gravitational force is a constant regardless of the relative motion of the source (Earth) or observer (ball).

Don't moving charges also have constant acceleration in the direction of the field? Without considering the change in distance, is the force (local instantaneous) between moving charges also constant regardless of the relative motion of the charges?

I'll pause here to learn if I'm already off the rails before advancing more questions...
Thanks :)
 
Physics news on Phys.org
bahamagreen said:
...I take it as an inertial reference frame and imagine the Earth receding...
It's only locally an inertial frame, not when you extend it to include the entire Earth.
 
bahamagreen said:
Is the ball's 4speed locally constant?
Yes. The norm of the four velocity is always c. It is essentially normalized to make that true.

bahamagreen said:
imagine the Earth receding, pausing, and approaching, because where would the energy come from for it to accelerate like that?
There is an unbalanced real force pushing upwards which caused the acceleration. If you follow the energy flow you pretty quickly get to a point where you cannot use the flat spacetime local approximation any more.

bahamagreen said:
But in either case, it then looks like the gravitational force is a constant regardless of the relative motion of the source (Earth) or observer (ball).
The gravitational force is 0 in the local inertial frame, by definition. It is nonzero in the ground frame, which is non inertial.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...

Similar threads

Back
Top