Green's Function for a Partial Differential Equation

arpon
Messages
234
Reaction score
16

Homework Statement


Find out the Green's function, ##G(\vec{r}, \vec{r}')##, for the following partial differential equation:
$$\left(-2\frac{\partial ^2}{\partial t \partial x} + \frac{\partial^2}{\partial y^2} +\frac{\partial^2}{\partial z^2} \right) F(\vec{r}) = g(\vec{r})$$
Here ##\vec{r} = (t,x,y,z)## and ##\vec{r}'=(t',x',y',z')##
The boundary conditions are:
i) When ##|(x-x') + (t-t')| < 0##, ##~~G(\vec{r}, \vec{r}') = 0##
ii) When ##|(x-x') - (t-t')| \rightarrow \infty##, ##~~G(\vec{r}, \vec{r}') = 0##
iii) When ##|y-y'| \rightarrow \infty##, ##~~G(\vec{r}, \vec{r}') = 0##
iv) When ##|z-z'| \rightarrow \infty##, ##~~G(\vec{r}, \vec{r}') = 0##

2. Homework Equations

Fourier transformation:
$$\tilde{G}(\vec{k}) = \int d^4 R~~G(\vec{R}) e^{-i \vec{k} \cdot \vec{R}}$$
Inverse Fourier transformation:
$$G(\vec{R}) = \frac{1}{(2\pi)^4} \int d^4 k~~\tilde{G}(\vec{k}) e^{i \vec{k} \cdot \vec{R}}$$
Here ##\vec{k} = (k_0,k_1,k_2,k_3)##

The Attempt at a Solution


The Green's function satisfies this equation:
$$\left(-2\frac{\partial ^2}{\partial t \partial x} + \frac{\partial^2}{\partial y^2} +\frac{\partial^2}{\partial z^2} \right) G(\vec{r}, \vec{r}') = \delta(\vec{r} - \vec{r}')$$
Let ##\vec{R} = \vec{r} - \vec{r}' = (T,X,Y,Z)##
The boundary conditions and the differential operator of the PDE are translation invariant. So ##G## is a function of ##\vec{r} - \vec{r}'##
Now we have
$$\left(-2\frac{\partial ^2}{\partial T \partial X} + \frac{\partial^2}{\partial Y^2} +\frac{\partial^2}{\partial Z^2} \right) G(\vec{R}) = \delta(\vec{R})$$
Fourier transform:
$$(2k_0k_1 -k_2^2 - k_3 ^2)~\tilde{G}(\vec{k}) = 1$$
$$\implies \tilde{G}(\vec{k}) = \frac{1}{2k_0k_1 -k_2^2 - k_3 ^2}$$
Now inverse Fourier transform:
$$G(\vec{R}) = \frac{1}{(2\pi)^4} \int d^4 k~~\frac{e^{i \vec{k} \cdot \vec{R}}}{2k_0k_1 -k_2^2 - k_3 ^2} $$

Consider the integral over ##k_0##. Apart from some constants, this is:
$$\int^{\infty}_{-\infty} \frac{e^{ik_0T}}{2k_0k_1 -k_2^2 - k_3 ^2} ~dk_0$$
$$= \frac{1}{2k_1} \int^{\infty}_{-\infty} \frac{e^{ik_0T}}{k_0 - \frac{k_2^2 + k_3 ^2}{2k_1}} ~dk_0$$

Considering these contour integral and the definition of Cauchy Principal Value,

drawing.png

we get:
$$sgn(T)~~\frac{ \pi i}{2k_1} e^{iT\frac{k_2^2+k_3^2}{2k_1}}$$

Now let us consider the integral over ##k_1##. Apart from some constants we get:

$$\int^{\infty}_{-\infty} dk_1 \frac{e^{i(Xk_1+T\frac{k_2^2+k_3^2}{2k_1})}}{k_1}$$

There is an essential singularity at ##k_1 = 0##. The integral does not converge.

Any help would be appreciated.
 

Attachments

  • drawing.png
    drawing.png
    4.9 KB · Views: 540
Physics news on Phys.org
May I suggest a change of variables to ##\tau = (x+t)/\sqrt 2## and ##\xi = (x-t)/\sqrt 2##?
 
Orodruin said:
May I suggest a change of variables to ##\tau = (x+t)/\sqrt 2## and ##\xi = (x-t)/\sqrt 2##?
This will transform the PDE into a wave equation. But this exercise asks to solve this problem not using this coordinate transformation.
Thanks for your suggestion anyway.
 
Last edited:
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top