1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Greiner Exercise 2.11

  1. Dec 27, 2016 #1
    1. The problem statement, all variables and given/known data
    Proof the leptonic-hadronic tensor multiplication, with ##p^\mu=(M,\textbf{0})## and ##p'^\mu=(E',\textbf{p}')## is rest target and final target momentum respectively, and ##k^\mu=(\omega,\textbf{k})##, ##k'\mu=(\omega'
    ,\textbf{k}')## is momenta of incoming and outgoing electron, hence we get

    $$L_{\mu\nu}T^{\mu\nu}=8\Big(2(k\cdot p)(k'\cdot p)+\frac{q^2}{2M^2}\Big)$$

    2. Relevant equations

    The hadronic tensor,

    The leptonic tensor,
    $$L_{\mu\nu}=2\Big(k'_\mu k\nu+k'_\nu k_\mu + \frac{1}{2}q^2g_{\mu\nu}\Big)$$.

    3. The attempt at a solution

    I try something like this

    $$ L_{\mu\nu}T^{\mu\nu} = 2\Big(k'_\mu k_\nu+k'_\nu k_\mu + \frac{1}{2}q^2g_{\mu\nu}\Big) (p+p')^\mu(p+p')^\nu $$

    Expanding the second term in the rhs

    $$ L_{\mu\nu}T^{\mu\nu} = 2\Big(k'_\mu k_\nu+k'_\nu k_\mu + \frac{1}{2}q^2g_{\mu\nu}\Big) (p^\mu p^\nu + p^\mu p'^\nu + p'^\mu p^\nu + p'^\mu p'^\nu) $$


    $$ L_{\mu\nu}T^{\mu\nu} = 2 \Big[ (k' \cdot p)(k \cdot p) + 2 (k'\cdot p)(k \cdot p') + (k' \cdot p')(k \cdot p') + (k' \cdot p)(k \cdot p) + 2 (k'\cdot p')(k \cdot p) + (k' \cdot p')(k \cdot p') + \frac{1}{2}q^2 (p^\mu p^\nu + p^\mu p'^\nu + p'^\mu p^\nu + p'^\mu p'^\nu) \Big] $$
  2. jcsd
  3. Dec 29, 2016 #2
    I think Greiner missprint the result. I've finally got the contraction result:

    $$ L_{\mu\nu}=8\Big(2(k\cdot p)(k'\dot p)+\frac{1}{2}q^2 M^2\Big) ,$$

    and if I use the relativistic limit, my result is confirmed.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted