Group action on cosets of subgroups in non-abelian groups

nbruneel
Messages
3
Reaction score
0
This is not a homework question, just a general question.

Let G be a non-abelian finite group, S < G a non-normal proper subgroup of index v >= 2, and G/S the set of v right cosets S_1 = S, S_2, ..., S_v, of S in G.

We know there is a naturally defined right-multiplication action G x G/S --> G/S defined by (g,S_i) |--> (S_i)g, and this action is a permutation action on G/S. So for any element g in G, the map \phi_g : G/S --> G/S defined by \phi_g(S_i) = (S_i)g is an element of Sym(v).

If \phi: G --> Sym(v) is the map which sends each g in G to \phi(g), and S < G is a proper subgroup, then what are the conditions for this map to be necessarily surjective? It seems that for v = 3, no additional conditions are required beyond non-normality of the subgroup S. But is this necessarily true for v >= 4?

Many thanks for any helpful comments or suggestions.
 
Last edited:
Physics news on Phys.org
Take G the dihedral group of order 8. Let S={1,b} (so the identity, and one reflection). Then S has index 4. Thus Sym(v) has 24 elements. So, since Sym(v) has more elements then G, no surjection G--> Sym(v) can exist...
 
I want to ask a question first why \phi_g is an element of Sym(v)?why should there is a S_j equals to S_i*g?

thanks
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top