Group Definition: Closure Not Required?

  • Thread starter Thread starter radou
  • Start date Start date
  • Tags Tags
    Binary
radou
Homework Helper
Messages
3,148
Reaction score
8
In the definition of a group on mathworld, http://mathworld.wolfram.com/Group.html" , implies closure, so, isn't it unnecessary to talk about the property closure in the definition of a group?
 
Last edited by a moderator:
Physics news on Phys.org
What do you mean "isn't it sufficient to talk about the property of closure in the definition of a group?" It is not necessary to talk about the property of closure in the defintion of a group. But "not necessary" is not the same thing as "sufficient". Anyways, although it is not necessary, in theory, to talk about the property of closure, you are often just given a set S with a function * with domain SxS, and you have to verify that * is indeed an operation, that is, that closure does indeed hold.
 
AKG said:
What do you mean "isn't it sufficient to talk about the property of closure in the definition of a group?" It is not necessary to talk about the property of closure in the defintion of a group. But "not necessary" is not the same thing as "sufficient". Anyways, although it is not necessary, in theory, to talk about the property of closure, you are often just given a set S with a function * with domain SxS, and you have to verify that * is indeed an operation, that is, that closure does indeed hold.

Yes, I corrected that, I meant 'not necessary'. OK, I get it, it's more general, since we don't always know if * is a binary operation.
 
There is often redundancy in how axioms. The statements are usually made so as to appear as clean as possible. One can, and often does, define a group without invoking the strict definition of binary operation, and just takes it to mean some operation that takes two objects and gives a third without necessarily saying where the third lies.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top