- 3,148
- 8
In the definition of a group on mathworld, http://mathworld.wolfram.com/Group.html" , implies closure, so, isn't it unnecessary to talk about the property closure in the definition of a group?
Last edited by a moderator:
AKG said:What do you mean "isn't it sufficient to talk about the property of closure in the definition of a group?" It is not necessary to talk about the property of closure in the defintion of a group. But "not necessary" is not the same thing as "sufficient". Anyways, although it is not necessary, in theory, to talk about the property of closure, you are often just given a set S with a function * with domain SxS, and you have to verify that * is indeed an operation, that is, that closure does indeed hold.