Group isomorphism and Polynomial ring modulo ideal

X-il3
Messages
3
Reaction score
0
Hi everyone.

I have two questions that I hope you can help me with.

First when trying to show isomorphism between groups is it enough to show that the order of each element within the group is the same in the other group? For example the groups (Z/14Z)* and (Z/9Z)*. They are both of order 6 and both have
1 element of order 1
1 element of order 2
2 elements of order 3
2 elements of order 6
And does the binary operator have to be the same in both groups when doing group isomorphism?

And the second question(actually the third one:smile:). I am trying to write the multiplication table for the following ring
Z_2[X]/(x^2 + x +). I know that this ring has 4 elements. Is it correct that the elements are the following
1
x + 1
x^2 + 1
x^2 + x + 1
?

Hope you can help me with this,

X-il3
 
Physics news on Phys.org
X-il3 said:
First when trying to show isomorphism between groups is it enough to show that the order of each element within the group is the same in the other group?

No.

And does the binary operator have to be the same in both groups when doing group isomorphism?

What do you mean by 'same'? If f is an isomorphism then f(xy)=f(x)f(y), if that's what you mean.


Z_2[X]/(x^2 + x +).

Is there a missing 1 there?

I know that this ring has 4 elements. Is it correct that the elements are the following
1
x + 1
x^2 + 1
x^2 + x + 1

Where is 0? Why haven't you written down x or x^x+x? (You have, by the way, but you have made a strange choice of representatives of the elements, which is why I ask, since it implies you've not really understood what you're doing.
 
matt grime said:
Is there a missing 1 there?
Yes there was 1 missing there.


matt grime said:
Where is 0? Why haven't you written down x or x^x+x? (You have, by the way, but you have made a strange choice of representatives of the elements, which is why I ask, since it implies you've not really understood what you're doing.
I thought the identity element in multiplication is 1 and therefore no 0. How would you represent the elements in this ring? More like this
0
x
x^2
x^2 + x
? Leaving the 1 out from all the elements?

X-il3
 
Now where's 1 gone? (Again, it is still there in disguise which makes more confused as toy what you're trying to do).
 
matt grime said:
Now where's 1 gone? (Again, it is still there in disguise which makes more confused as toy what you're trying to do).

Ok here is one more try. Hope I get it right this time :smile:.
Since we are working in Z_2 then a = -a where a is an element in Z_2.

We know that X^2 + x + 1 = 0 = [0]. Moving numbers around now we then get the remaining 3 elements in the ring.
x^2 + x = 1 = [1]
x^2 + 1 = x = [x]
x + 1 = x^2 = [x^2]

X-il3
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top