Groups of prime order structurally distinct?

  • Thread starter Thread starter dumbQuestion
  • Start date Start date
  • Tags Tags
    Groups Prime
dumbQuestion
Messages
124
Reaction score
0
I have a question. If I have a group G of order p where p is prime, I know from the *fundamental theorem of finite abelian groups* that G is isomorphic to Zp (since p is the unique prime factorization of p, and I know this because G is finite order) also I know G is isomorphic to Cp (the pth roots of unity). I also know that G is cyclic and since its isomorphic to Zp I know that all of its elements are generators. Also we know that the only subgroups of G are the trivial subgroup and G itself. We know because G is cyclic, that it is abelian. These are the properties I can determine. [EDIT: Thought of another thing. any nontrivial homomorphism from h: G --> G' should be injective right because ker(h) should be trivial because ker(h) is a subgroup of G and we know G only has subgroups {e} and G itself, and if h is not trivial this means ker(h) must be {e} so its trivial meaning h is injective]But is it true that for each prime p, there is only one structurally distinct group (up to isomorphism)? Is there a theorem that indicates one way or another this fact?EDIT: Think I figured it out. FUndamental theorem of finite abelian groups gauranteeds that if G and G' are both groups of order p where p is prime, then G isomorphic to Zp and G' isomorphic to Zp so this means G isomorphic to G'. Since the selection of G and G' are arbitrary, this means for all G, G' of order p, p prime that G is isomorphic to G' so there is only one structurally distinct group of order p
 
Last edited:
Physics news on Phys.org
dumbQuestion said:
But is it true that for each prime p, there is only one structurally distinct group (up to isomorphism)? Is there a theorem that indicates one way or another this fact?

If G is a group of order p, then define f:G → Zp by mapping a generator of G to 1. This produces an isomorphism.
 
But this is showing that G and Zp are isomorphic, right? I'm curious about two groups of order p that are not isomorphic to each other.
 
dumbQuestion said:
But this is showing that G and Zp are isomorphic, right? I'm curious about two groups of order p that are not isomorphic to each other.

Isomorphism is an equivalence relation. If both groups of order p are isomorphic to Zp, then they are isomorphic to each other.
 
Yeah I see that now, I feel kind of stupid now for not seeing it before!
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top