Guassian elimination and Inverse Matrix

phantomAI
Messages
17
Reaction score
0
I'm still having trouble with Guassian elimination and finding the Inverse of a Matrix. I tend to get confused with the switching of the rows or factoring out something.

Example matrix

1 1 1 | 1
1 1 -2 | 3
2 1 1 | 2

so it's a system of linear equations and I must solve for x, y, and z.

I was wondering is someone could help show the steps in solving these matrices as well as explain finding the solution to the inverse matrix.

I know that to find the inverse, the Matrix must be dotted by the Identity matrix.

Thanks
 
Physics news on Phys.org
never mind, I figured out how to do the inverse, but had to see it through a 2x2 matrix first. I'm still bad at doing the Guassian elimination matrix though unless I write out as a linear system of equations, but I don't want to keep on converting it to a linear system to solve..I just want to solve through matrix form.
 
Gaussian Elimination & Matrix Inverse

The basic process is to hold the first row first column element constant while getting the 1st col, 2nd & 3rd to zero. Remembering to join a matrix of the same dimension (n*n) as an adjoint i.e. n*2n cols. The goal: shift the three right columns to the left by repeating the process in the first sentence, only in the second column the middle integer is reduced to 1 while the numbers above and below are reduced to 0.

This is fairly simple on a three by three matrix, gets trickier the higher one goes i.e. 5*5. At times there is no inverse so don't chase for a no answer situation. Solutions of inverses can be found on the Web using Google.
 
May I ask how to find solutions on google? I'm still trying to figure out all of the wonderful aspects of the google calculator :). Thanks.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top