VVS2000 said:
so I was studying H theorem from Richard Fitzpartic's site.
https://farside.ph.utexas.edu/teaching/plasma/Plasma/node35.html
I want to understand how they got these particular values for a, b &c
The distribution function ##f_i## is assumed to be of the form $$\ln f_i = a_i + m_i \mathbf{b}\cdot \mathbf{v}_i + m_i c v_i^2$$ where ##a_i, \mathbf{b},## and ##c## are constants.
Then the constants ##n_i, \mathbf{V},## and ##T## are
defined in the link in terms of the constants ##a_i, \mathbf{b},## and ##c## by the equations
$$\begin{align*}
a_i & = \ln\left[n_i \left(\frac{m_i}{2 \pi T}\right)^{3/2}\right] - \frac{m_i V^2}{2T} \\
b & = \frac{1}{T}\mathbf{V}\\
c & = -\frac{1}{2T}
\end{align*}$$ At this point, the physical meaning of the constants ##n_i, \mathbf{V},## and ##T## is not evident.
You can then show that the distribution function in terms of these constants takes the Maxwell-Boltzmann form $$f_i = n_i \left(\frac{m_i}{2 \pi T} \right)^{3/2} \exp\left[- \frac{m_i(\mathbf{v}_i - \mathbf{V})^2}{2T} \right]$$
Using this form of ##f_i##, you find by straightforward integration that
$$\begin{align*}
n_i & = \int f_i \, d^3\mathbf{v}_i \\
n_i \mathbf{V} & = \int \mathbf{v}_i \, f_i \, d^3\mathbf{v}_i\\
\frac 3 2 n_i T & = \int \frac 1 2 m_i \, v_i^2 \, f_i \, d^3\mathbf{v}_i - n_i \frac 1 2 m_i V^2
\end{align*}$$
Note that the last equation here differs from equation (3.55) in the link where the last term is not included. I believe (3.55) in the link is incorrect.
These equations show the physical meaning of the constants ##n_i, \mathbf{V}, ## and ##T##.
Of course, the student could be left scratching her head wondering how anyone would know ahead of time to define the constant ##n_i## by the strange-looking equation ##a_i = \ln\left[n_i \left(\frac{m_i}{2 \pi T}\right)^{3/2}\right] - \frac{m_i V^2}{2T}##.
---------------------------------------
Another way to develop this is to
define the constants ##n_i, \mathbf{V},## and ##T## by the physically meaningful equations
$$\begin{align*}
n_i & = \int f_i \, d^3\mathbf{v}_i \\
n_i \mathbf{V} & = \int \mathbf{v}_i \, f_i \, d^3\mathbf{v}_i\\
\frac 3 2 n_i T & = \int \frac 1 2 m_i \, v^2 \, f_i \, d^3\mathbf{v}_i - n_i \frac 1 2 m_i V^2
\end{align*}$$ where ##f_i## is the distribution function defined in terms of the constants ##a_i, \mathbf{b},## and ##c## : $$\ln f_i = a_i + m_i \mathbf{b}\cdot \mathbf{v}_i + m_i c v_i^2$$ That is, $$f_i = \exp[ a_i + m_i \mathbf{b}\cdot \mathbf{v}_i + m_i c v_i^2]. $$ Then you can
derive the equations
$$\begin{align*}
a_i & = \ln\left[n_i \left(\frac{m_i}{2 \pi T}\right)^{3/2}\right] - \frac{m_i V^2}{2T} \\
b & = \frac{1}{T}\mathbf{V}\\
c & = -\frac{1}{2T}
\end{align*}$$ by carrying out the integrations in
$$\begin{align*}
n_i & = \int f_i \, d^3\mathbf{v}_i \\
n_i \mathbf{V} & = \int \mathbf{v}_i \, f_i \, d^3\mathbf{v}_i\\
\frac 3 2 n_i T & = \int \frac 1 2 m_i \, v^2 \, f_i \, d^3\mathbf{v}_i - n_i \frac 1 2 m_i V^2
\end{align*}$$
For example, with ##f_i = \exp[ a_i + m_i \mathbf{b}\cdot \mathbf{v}_i + m_i c v_i^2] ##, you can show that $$\begin{align*}
\int f_i \, d^3 \mathbf{v}_i & = \left(\frac{\pi}{m_i|c|} \right)^{3/2} \exp\left[ a_i + \frac{m_ib^2}{4|c|} \right] \\
\int \mathbf{v}_i \, f_i \, d^3 \mathbf{v}_i & = n_i \frac{\mathbf{b}}{2|c|} \\
\int v_i^2 \, f_i \, d^3 \mathbf{v}_i & = n_i \left( \frac{3}{2 m_i |c|} + \frac{b^2}{4c^2} \right)
\end{align*}$$ Using these in the defining relations
$$\begin{align*}
n_i & = \int f_i \, d^3\mathbf{v}_i \\
n_i \mathbf{V} & = \int \mathbf{v}_i \, f_i \, d^3\mathbf{v}_i\\
\frac 3 2 n_i T & = \int \frac 1 2 m_i \, v^2 \, f_i \, d^3\mathbf{v}_i - n_i \frac 1 2 m_i V^2
\end{align*}$$ gives three equations that can be used to derive
$$\begin{align*}
a_i & = \ln\left[n_i \left(\frac{m_i}{2 \pi T}\right)^{3/2}\right] - \frac{m_i V^2}{2T} \\
b & = \frac{1}{T}\mathbf{V}\\
c & = -\frac{1}{2T}
\end{align*}$$
This approach is fairly tedious. But it has the advantage of not having to pull the equation ##a_i = \ln\left[n_i \left(\frac{m_i}{2 \pi T}\right)^{3/2}\right] - \frac{m_i V^2}{2T}## out of thin air.