Hamilton EOM for Schwarzschild Metric: Problem Solved

sergiokapone
Messages
306
Reaction score
17
I have a problem (this is not homework)
Based on covariant Lagrangian ## \mathcal {L} = \frac {m}{2} \frac{dx^{\mu}}{ds} \frac {dx _ {\mu}}{ds} ## record the equations of motion in Hamiltonian form for a particle in the Schwarzschild metric (SM).

Based on Legandre transformations
\begin{equation}
H =\frac {m}{2} p_{\mu}g^{\mu\nu}p_{\nu}
\end{equation}

EOM in Hamilton form (as shown in Goldstein)
\begin{align}
\frac{dx^{\mu}}{ds} = g^{\mu\nu} \frac{\partial H}{\partial p^{\nu}}\\
\frac{dp^{\mu}}{ds} = -g^{\mu\nu} \frac{\partial H}{\partial x^{\nu}}
\end{align}

Canonical momentum is ##p_{\mu}##, but not ##p^{\mu}##. How it is possible to apply this equations for the
Schwarzschild metric?

Again, if I write

\begin{align}
\frac{dx_{\mu}}{ds} = g_{\mu\nu} \frac{\partial H}{\partial p_{\nu}}\\
\frac{dp_{\mu}}{ds} = -g_{\mu\nu} \frac{\partial H}{\partial x_{\nu}} \label{5}
\end{align}

The RHS of equation ##\eqref{5}## in SM for any component allways will give ##0##, because ##H## does not depend on ##x^{\mu}##. But one know the ##p_{r}## does not conserve, ##dp_r/d\tau \neq 0## for SM.

My question, what is the correct view of EOM in Hamilton form for GR in general, or for the SM in specific?
 
Physics news on Phys.org
sergiokapone said:
The RHS of equation ##\eqref{5}## in SM for any component allways will give ##0##, because ##H## does not depend on ##x^{\mu}##.

Careful. In the definition of H in (1), the g^{\mu \nu} have explicit coordinate dependence, and thus H does also.
 
Ok, thanx, I try.
 
sergiokapone said:
I have a problem (this is not homework)
Based on covariant Lagrangian ## \mathcal {L} = \frac {m}{2} \frac{dx^{\mu}}{ds} \frac {dx _ {\mu}}{ds} ## record the equations of motion in Hamiltonian form for a particle in the Schwarzschild metric (SM).
If you want to see this worked out have a look at http://arxiv.org/abs/1201.5611v1.pdf.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top