AhmirMalik
- 7
- 1
Homework Statement
Given H=\frac{1}{2m}\left[ \vec{P}-q\vec{A}\right] ^{2}+qU+\frac{q\hbar }{2m}\vec{\sigma}.\vec{B} ..(1)
show that it can be written in this form;
H=\frac{1}{2m}\left\{ \vec{\sigma}.\left[ \vec{P}-q\vec{A}\right] \right\}^{2}+qU ...(2)
Homework Equations
[/B]
In my case, I am going to use only;
\left( \vec{\sigma}.\vec{R}\right) ^{2}=\vec{R^2}+i\vec{\sigma}.\left( \vec{R}\times \vec{R}\right) ...(3)
The Attempt at a Solution
Writing equation (1) in this form;
H=\frac{1}{2m}\left[\left[ \vec{P}-q\vec{A}\right]^{2}-i\vec{\sigma}(iq\hbar\vec{B})\right]+qU
using the equation (3) and identifying terms;
\vec{R}=\vec{P}-q\vec{A}
then, to replace \left[\left[ \vec{P}-q\vec{A}\right]^{2}-i\vec{\sigma}(iq\hbar\vec{B})\right] by \left\{ \vec{\sigma}.\left[ \vec{P}-q\vec{A}\right] \right\}^{2}
the following must satisfy;
\left( \vec{R}\times\vec{R}\right)=iq\hbar\vec{B}
to do that, I write RxR like;
\left[ \vec{P}-q\vec{A}\left( \vec{R},t\right) \right] \times \left[ \vec{P}-q\vec{A}\left( \vec{R},t\right) \right] =\vec{P}\times \vec{P}+q^{2}\vec{A} \times \vec{A}-\vec{P}\times q\vec{A} -q\vec{A}\times \vec{P}
the first two term (PxP and AxA) on the right hand are equal to 0. But I don't know what to do with the rest;
\vec{P}\times q\vec{A} -q\vec{A}\times \vec{P}