Hamiltonian Mechanics: why paths in state space never cross each other

Click For Summary

Discussion Overview

The discussion revolves around the concept of paths in state space within Hamiltonian mechanics, specifically addressing why these paths are said to never cross each other. Participants explore the implications of crossing paths on the determinism of the system and the uniqueness of solutions to Hamilton's equations.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant expresses confusion over the author's argument that paths in state space never cross, seeking clarification.
  • Another participant questions the implications of crossing paths, asking how the state would evolve if a system were prepared at a crossing point.
  • It is noted that if paths could cross, it would imply multiple directions from the same point, contradicting the uniqueness of direction dictated by Hamilton's equations.
  • A further point is made that alternate histories resulting from crossing paths are not permissible in physics.
  • One participant introduces a discussion on determinism, suggesting that if the universe were non-deterministic, crossing paths could be possible, but emphasizes that classical physics assumes determinism.
  • Another participant reflects on the implications of intersecting paths, stating that it would require additional information to determine the motion, which contradicts Hamilton's equations.
  • A participant mentions the analogy between Hamiltonian mechanics and fluid motion, seeking further clarification on this comparison.
  • Concerns are raised about the uniqueness of solutions in Hamiltonian systems, particularly in higher dimensions.
  • One participant explains that Hamilton's equations define a vector field in phase space, asserting that a crossing would imply a vector having two directions, which is mathematically impossible.

Areas of Agreement / Disagreement

Participants express a range of views on the implications of crossing paths, with some agreeing on the deterministic nature of classical physics while others introduce the possibility of non-determinism. The discussion remains unresolved regarding the implications of these ideas on Hamiltonian mechanics.

Contextual Notes

Participants acknowledge the complexity of the topic, particularly in relation to the uniqueness of solutions and the implications of crossing paths in state space. There are references to the potential for constructing Hamiltonian systems with varying degrees of freedom, which may complicate the discussion further.

dRic2
Gold Member
Messages
887
Reaction score
225
I'm reading a book about analytical mechanics and in particular, in a chapter on hamiltonian Mechanics it says:

"In the state space (...) the complete solutionbof the canonical equations is pictured as an infinite manifold of curves which fill (2n+1)-dimensional space. These curves never cross each other. Indeed, such crossing would mean that two tangents are possible at the same point of the state space , but that is excluded because of the canonical equations which give a unique tangent at any point of the space."

I'm not following very well the argument of the author. Can someone help me, please ?

Thanks
Ric
 
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
Suppose paths could cross, and further suppose I prepare the system in the state at the crossing point. How does the state evolve? Which path does it take?
 
  • Like
  • Informative
Likes   Reactions: sophiecentaur, dRic2 and Delta2
The canonical equations basically say from any point in phase space which direction you go. Each point has only one direction. If there is a crossing then there would be two directions to go from the same point.
 
  • Informative
Likes   Reactions: dRic2
Dale said:
If there is a crossing then there would be two directions to go from the same point.
Adding to that, there would also be two directions in past time to come from. Alternate histories like that are not allowed in physics.
 
  • Like
  • Wow
Likes   Reactions: Dale and dRic2
Should I open a mini can of worms here and through the question whether the universe is deterministic or non deterministic. If the universe is non deterministic then we can certainly have paths in the state space crossing each other.
BUT since we are in the classical physics subforum and the book the OP is referring to is for classical Hamiltonian mechanics, the universe is always deterministic for classical physics. Not sure if we can say the same for quantum physics though.
 
  • Wow
Likes   Reactions: dRic2
So basically, if I set a point, giving all the coordinates, according to Hamilton's equation I can then predict the motion, but if two or more paths intersected in that point, geometrically I wouldn't be able to choose one path: I would need an other information. But that contradicts Hamilton's equations which assure me that the motion is uniquely defined if I gave all the coordinates of that point. Did I get it ?

If I can bother a little more, the line just below this one says:

"The geometrical and analytical picture we get here is in complete analogy with the motion of a fluid"

Can you provide some more hints please?

Thank you very much
Ric
 
  • Like
Likes   Reactions: Dale
  • Like
Likes   Reactions: Delta2
The kind of differential equations that can describe some real-world physics always have a unique solution. I'm not sure, though, whether it could be possible to construct a sequence of Hamiltonian systems with an increasing number of degrees of freedom, such that in the limit of infinite dimensions the equations of motion fail to have a unique solution.
 
  • Like
Likes   Reactions: Delta2
dRic2 said:
So basically, if I set a point, giving all the coordinates, according to Hamilton's equation I can then predict the motion, but if two or more paths intersected in that point, geometrically I wouldn't be able to choose one path: I would need an other information. But that contradicts Hamilton's equations which assure me that the motion is uniquely defined if I gave all the coordinates of that point. Did I get it ?

If I can bother a little more, the line just below this one says:

"The geometrical and analytical picture we get here is in complete analogy with the motion of a fluid"

Can you provide some more hints please?

Thank you very much
Ric

That's overcomplicating it just a little, although it is correct. Here's what I would say:

Hamilton's equations of motion for a system define a vector field that gives a vector for every value of (q,p) in phase space. When supplied with initial conditions, Hamilton's equations can be solved for a curve that represents the motion of the system in phase space, in the sense that we can say that the state of the system is represented as a particle that moves along this curve with its location on the curve parameterized by time.

The vectors defined by Hamilton's equations are tangent to the curve. If there was a point on the curve where it intersected itself, then it would mean that the vector tangent to the curve at that point would have two directions at once, which is mathematically impossible (how can a vector have two directions?).

This article might help to clarify:
https://en.wikipedia.org/wiki/Integral_curve
 
  • #10
Thanks for the reply, but I don't find it that complicated :biggrin:

BTW I solved this other issue some days ago and forgot to mention
dRic2 said:
"The geometrical and analytical picture we get here is in complete analogy with the motion of a fluid"

Can you provide some more hints please?

It think all my doubts regarding the question have been answered. Thank to you all :)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
7K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
14K
  • · Replies 8 ·
Replies
8
Views
1K