(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Derive that:

[tex]\left[r\frac{\partial\overline{f}}{\partial r}\right]}^{r=R}_{r=0}=0[/tex]

2. Relevant equations

I have taken the Laplacian [tex]\nabla^{2}f=0[/tex] for a disk in cylindrical co-ordinates and have found that:

[tex]\int^{R}_{0}\int^{2\pi}_{0} \left[\frac{\partial}{\partial r}(r\frac{\partial f}{\partial r})\right] d\varphi dr=0[/tex]

And the definition of the average of the function around the circle of radius r is provided:

[tex]\overline{f}(r)\equiv\frac{1}{2\pi}\int^{2\pi}_{0}f(r,\varphi)d\varphi[/tex]

3. The attempt at a solution

This ones seems to have me stumped.

I've tried setting

[tex]\int^{2\pi}_{0} \left[\frac{\partial}{\partial r}(r\frac{\partial f}{\partial r})\right] d\varphi = \int^{2\pi}_{0}f(r,\varphi)d\varphi = 2\pi\overline{f}(r)[/tex]

But that didn't seem to be fruitful.

I've tried expanding

[tex]\left[\frac{\partial}{\partial r}(r\frac{\partial f}{\partial r})\right]d\varphi = \frac{\partial f}{\partial r}d\varphi + r\frac{\partial^{2} f}{\partial r^{2}}d\varphi [/tex]

That looks a little bit like a Taylor series but I don't know what to do with it. I've been playing around with the algebra but can't seem to find my break through.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Harmonic Function

**Physics Forums | Science Articles, Homework Help, Discussion**