- #1
Tiberious
- 73
- 3
Homework Statement
A furnace wall consists of three layers of material as shown below.
The thermal conductivities are:Firebrick = 1.15 W m–1 K–1
Insulating brick = 0.17 W m–1 K–1
Ordinary brick = 0.62 W m–1 K–1
Calculate:
- (i) the thermal resistance of each layer
- (ii) the heat loss per unit area
- (iii) the temperature at the two interfaces.
Homework Equations
The Thermal Resistance of each layer.
Given equation:
R_a= L/k
The Heat Loss per unit area.
Given equation:
q= ((T_1-T_2))/R_a
The Attempt at a Solution
The Thermal Resistance of each layer.
Given equation:
R_a= L/k
Thermal Resistance of Firebrick:
L=220mm=2.2〖0m〗^(-3)
k=1.15 W m-1 K-1
R_a= (2.〖20〗^(-3))/(1.15 )=1.913 m^2 K W^(-1)
Thermal Resistance of the Insulating Brick:
L=110mm=1.1〖0m〗^(-3)
k=0.17 W m-1 K-1
R_a= (1.〖10〗^(-3))/(0.17 )=6.471 m^2 K W^(-1)
Thermal Resistance of the Ordinary Brick:
L=110mm=2.35^(-3)
k=0.17 W m-1 K-1
R_a= (2.〖35〗^(-3))/0.62=3.790 m^2 K W^(-1) The Heat Loss per unit area.
Given equation:
q= ((T_1-T_2))/R_a
Temperature One: 750
Temperature Two: 56
Heat Loss per unit area Firebrick:
q= ((750-56))/(1.913 m^2 K W^(-1) )
q=362.781 W m^(-2)
Heat Loss per unit area Insulating Brick:
q= ((750-56))/(6.471 m^2 K W^(-1) )
q=107.248 W m^(-2)
Heat Loss per unit area Ordinary Brick:
q= ((750-56))/(3.790 m^2 K W^(-1) )
q=183.113 W m^(-2)
The Temperature at the two interfaces.
Determine the total resistance
R_a= R_a12+ R_a23+ R_a34
Inputting our known values
R_a= 1.91 + 6.47+ 3.79 =12.174 m^2 K W^(-1)
= 12.174
Heat Loss per unit area
q= (T_1-T_4)/R_a
= ((750-56))/(12.174 )
≈57 W m^(-1)We can now determine the temperature at the interfaces.
Determining the temperature at interface one.
q_12=q
q=57 W m^(-1)
So,
q_12= (T_(1-) T_2)/R_a12
→ T^1-T^2= R_a12 q_12
= 1.913∙57
=109.041 °C
Determine T_2
T_2= T_1-109.041
=750-109.041
Temperature at interface one.
=640.959°C
Determining the temperature at interface two.
q_23=q
q=57 W m^(-1)
So,
q_23= (T_1-T_2)/R_a23
→ T^2-T^3= R_a23 q_23
=6.471 ∙57
=368.847°C
Determine T_3
T_3= T_2-368.85
= 640.959-368.847
Temperature at interface Two.
=272.112°C
Finally,
=3.790 ∙57
=216.03
Determine T_4
T_4= T_3-216.03
= 272.112-216.03
≈56°C
Last edited by a moderator: