SystemTheory
- 234
- 0
In the moving air, a watt is proportional to the air density times velocity cubed. It hits the wind turbine and generates watts as torque times angular velocity, with some loss. It jumps the air gap in the alternator and converts watts to volts times amperes. So if you work backwards the volts are proprtional to wind speed squared (most likely approximation) and the amps will adjust to the resistance in the load (each heater element is mostly resistive).
My derating comment needs further thought, so don't get distracted by that. The machine will make so many watts, on average, per hour at the heater elements, and that should convert to 3.42 btu if it converts 100% to heat stored in the water/concrete floor. I read a post by a mechanical contractor. When the 120V heater elements burn out, he recommends replacing with a 240V element having a similar power rating, and says those cores will never burn out. That is what I meant by derating the component (using a superior quality core to get the same power output but perhaps longer service life).
My derating comment needs further thought, so don't get distracted by that. The machine will make so many watts, on average, per hour at the heater elements, and that should convert to 3.42 btu if it converts 100% to heat stored in the water/concrete floor. I read a post by a mechanical contractor. When the 120V heater elements burn out, he recommends replacing with a 240V element having a similar power rating, and says those cores will never burn out. That is what I meant by derating the component (using a superior quality core to get the same power output but perhaps longer service life).
Last edited: