Calabi
- 140
- 2
Hello when I try to go form the Schrödinger picture to the Heisenberg picture I get this equality : <br />
\begin{align}<br />
{d \over dt} A(t)<br />
= {i \over \hbar} H e^{iHt / \hbar} A e^{-iHt / \hbar} + e^{iHt / \hbar} \left(\frac{d A}{d t}\right) e^{-iHt / \hbar} + {i \over \hbar} e^{iHt / \hbar} A \cdot (-H) e^{-iHt / \hbar} \\<br />
= {i \over \hbar} e^{iHt / \hbar} \left( H A - A H \right) e^{-iHt / \hbar} + e^{iHt / \hbar} \left(\frac{d A}{d t}\right) e^{-iHt / \hbar} \\<br />
= {i \over \hbar } \left( H A(t) - A(t) H \right) + e^{iHt / \hbar} \left(\frac{d A}{d t}\right)e^{-iHt / \hbar} .<br />
\end{align}
I right A(t) the Heisenberg picture of the operator(which depend of the time.). and A the Schrödinger picture of the operator.
What permit me to say that : \frac{\partial A(t)}{\partial t} = e^{iHt / \hbar} \left(\frac{d A}{d t}\right)e^{-iHt / \hbar} please?
I want to know if it's a Mathemtical definition or a physical definition.
Then I can say that with the classical Poisson brackets \{H, A\} between the Hamiltonian and the Physical Quantity A correspond to the \frac{i}{\hbar}[H, A] commutator between those 2 operator.
By the correspondance principle.
Thank you in advance and have a nice afternoon
.
I right A(t) the Heisenberg picture of the operator(which depend of the time.). and A the Schrödinger picture of the operator.
What permit me to say that : \frac{\partial A(t)}{\partial t} = e^{iHt / \hbar} \left(\frac{d A}{d t}\right)e^{-iHt / \hbar} please?
I want to know if it's a Mathemtical definition or a physical definition.
Then I can say that with the classical Poisson brackets \{H, A\} between the Hamiltonian and the Physical Quantity A correspond to the \frac{i}{\hbar}[H, A] commutator between those 2 operator.
By the correspondance principle.
Thank you in advance and have a nice afternoon
