Heisenberg uncertainty question

Click For Summary
The discussion centers on the Heisenberg Uncertainty Principle (HUP) and its implications for measuring position and velocity in quantum mechanics. It clarifies that while one cannot know both position and momentum with arbitrary precision simultaneously, measurements can be made on separate groups of particles to yield statistical spreads of each observable. The last sentence from Hawking's quote is interpreted as allowing for the prediction of a combination of position and momentum through non-commuting observables, provided measurements are executed with intentional margins of error. This approach can be applied to entangled particles, where measurements on one particle do not violate the HUP while still providing useful information about both particles. The conclusion emphasizes that the HUP does not prevent measuring both observables, but limits the precision of simultaneous measurements.
lightoflife
Messages
4
Reaction score
0
I read this article by Hawking which includes this quote "
In classical mechanics one can
predict the results of measuring both the
position and the velocity of a particle.
In quantum mechanics the uncertainty
principle says that only one of these
measurements can be predicted; the ob
server can predict the result of measur
ing either the position or the velocity but
not both. Alternatively he can predict
the result of measuring one combination
of position and velocity."

Can someone elaborate on the last sentence "Alternatively he can predict
the result of measuring one combination of position and velocity"

How is that supposed to work exactly? If you can know only one or the other then how do you measure the combination to predict anything?
 
Physics news on Phys.org
I don't know what Hawking meant. I can however tell you what the correct statement of the principle is.

Suppose you have a large number of similarly prepared systems ie all are in the same quantum state. Divide them into two equal lots. In the first lot measure position to a high degree of accuracy. QM places no limit on that accuracy - its a misunderstanding of the uncertainty principle thinking it does. The result you get will have a statistical spread. In the second lot measure momentum to a high degree of accuracy - again QM places no limit on that. It will also have a statistical spread. The variances of those spreads will be as per the Heisenberg Uncertainty principle.

Thanks
Bill
 
  • Like
Likes vanhees71
lightoflife said:
I read this article by Hawking which includes this quote "
In classical mechanics one can
predict the results of measuring both the
position and the velocity of a particle.
In quantum mechanics the uncertainty
principle says that only one of these
measurements can be predicted; the ob
server can predict the result of measur
ing either the position or the velocity but
not both. Alternatively he can predict
the result of measuring one combination
of position and velocity."

Can someone elaborate on the last sentence "Alternatively he can predict
the result of measuring one combination of position and velocity"

How is that supposed to work exactly? If you can know only one or the other then how do you measure the combination to predict anything?

Yes, this scenario is actually an application of the HUP. It is the product of 2 non-commuting observables' standard deviations which cannot be less than a certain quantity (a constant). A measurement (say p) which is not intended to be more accurate than a certain value can be executed. Another (say q) which is also not intended to be more accurate than a certain value can then be executed. As long as those are properly executed, you will know a combination of p and q as Hawking says.

This could, for example, be done on entangled particles: execute a measurement of p on Alice, execute a measurement of q on Bob. Done properly, you would not violate the HUP and you would still know a lot about Alice (and Bob). You would know p +/- and you would know q +/-.

Again, you could not execute such measurements with more precision than the HUP allows and expect useful information. This is *not* the EPR example, because in that example non-commuting observables are measured to very tight precision. So the proper execution in my example means the margin of error was intentionally made larger.
 
This is a disappointingly misleading quote from Hawking. There is nothing to stop you from measuring both the position and momentum of a particle, as Hawking seems to imply at first. The HUP states that you cannot simultaneously know both of them at an arbitrary level of accuracy.
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
First, I need to check that I have the 3 notations correct for an inner product in finite vector spaces over a complex field; v* means: given the isomorphism V to V* then: (a) physicists and others: (u,v)=v*u ; linear in the second argument (b) some mathematicians: (u,v)=u*v; linear in the first argument. (c) bra-ket: <v|u>= (u,v) from (a), so v*u . <v|u> is linear in the second argument. If these are correct, then it would seem that <v|u> being linear in the second...