I Helmholtz Free Energy: Why is F Minimized?

AI Thread Summary
The Helmholtz free energy (F) is minimized at constant temperature (T) and volume (V) at equilibrium, particularly in a closed system where no mass transfer occurs (dN=0). At equilibrium, all parameters, including pressure (p), volume (V), and temperature (T), remain constant, leading to a stable state where the system cannot change further. While F may appear constant, it is essential to consider the conditions under which it is minimized, including the behavior of the system as it evolves towards equilibrium. The minimization of F is linked to the maximization of entropy (S) and the stability of the system. Therefore, understanding the second derivative of F is crucial to confirm that it is indeed at a minimum.
Silviu
Messages
612
Reaction score
11
Hello! I read that the Helmholtz free energy is minimized at constant T and V at equilibrium. But I am not sure I understand why. So starting from ##F=U-TS## I got ##dF = \mu dN - pdV -SdT##. So at constant V and T we have ##dF = \mu dN##. Now I am not sure how does this implies that F is minimized and minimized with respect to what? Can someone tell me why is F minimized? Thank you!
 
Physics news on Phys.org
I think the statement you are referring to is missing to say that it is for a closed system, that is, there's not mass transferring (so ##dN=0##).
 
Mr rabbit said:
I think the statement you are referring to is missing to say that it is for a closed system, that is, there's not mass transferring (so ##dN=0##).
Thank you for the reply. However, if T, V and N (and hence p) are constant, then nothing changes in the system. Doesn't that means that F is constant, so it doesn't make sense to talk about a minimum? (Also, the context in which I read this is about chemical reactions, so dN changes i assume.)
 
It is assumed (and can be proved) that all parameters are constant at equilibrium. Think, for example, on an expansive system, so you take ##U=U (S, V, N)##; If you "drop" the system from an arbitrary state, always evolves to another state (equilibrium state) until the energy U is minimal and the entropy S is maximal. All parameters evolves too (p, V, T ...) and when the system reaches equilibrium state you get ##p=const ## (mechanical equilibrium), ##T=const## (thermal equilibrium), ##N=const## (chemical equilibrium).

Helmholtz free energy is the internal energy U but depending on temperature instead of entropy.
 
##F## being constant is only one prerequisite to be a minimum; you also need to show that the second derivative is less than zero.
 
Thread 'Gauss' law seems to imply instantaneous electric field'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Maxwell’s equations imply the following wave equation for the electric field $$\nabla^2\mathbf{E}-\frac{1}{c^2}\frac{\partial^2\mathbf{E}}{\partial t^2} = \frac{1}{\varepsilon_0}\nabla\rho+\mu_0\frac{\partial\mathbf J}{\partial t}.\tag{1}$$ I wonder if eqn.##(1)## can be split into the following transverse part $$\nabla^2\mathbf{E}_T-\frac{1}{c^2}\frac{\partial^2\mathbf{E}_T}{\partial t^2} = \mu_0\frac{\partial\mathbf{J}_T}{\partial t}\tag{2}$$ and longitudinal part...
Back
Top