jtleafs33
- 28
- 0
Homework Statement
Find the Fourier Transform of:
f(t)=\frac{cos(\alpha t)}{t^2+\beta^2}
Homework Equations
F(\omega)=\frac{1}{2\pi}\int^{∞}_{-∞}\frac{cos(\alpha t)exp(i \omega t)}{t^2+\beta^2}
The Attempt at a Solution
I start with:
cos(\alpha t)=\frac{exp(i \alpha t)+exp(-i \alpha t)}{2}
Substituting this in, I get:
F(\omega)=\frac{1}{4\pi}\int^{∞}_{-∞}\frac{exp(it(\alpha+\omega))+exp(it(\omega-\alpha))}{t^2+\beta^2}
From here I know I should be able to get this in the form of some delta functions but I can't figure out the manipulation. I'd appreciate any help!