Help for a sets/functions theorem proof

  • Thread starter Thread starter fuzuli
  • Start date Start date
  • Tags Tags
    Proof Theorem
fuzuli
Messages
5
Reaction score
0
I am stuck at a proof and do not even have an idea where to start and how to start:

Let X and Y be sets, and let f : X → Y be a surjection. Prove that there is an injection g : Y → X such that f (g(y)) = y for every y ∈ Y.

Could you please show me a way?
 
Physics news on Phys.org
Hint: you will need to use the axiom of choice to define g. For each y in Y, you need to choose an x such that f(x) = y.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top