Help Me Out With These 2 Tough Questions

  • Thread starter Thread starter evanx
  • Start date Start date
AI Thread Summary
The discussion revolves around two mathematical questions involving the Well-Ordering Principle. For Q1, participants emphasize that m can be expressed as m = qn + r, where r is a natural number less than n, and suggest demonstrating this through the Well-Ordering Principle by identifying the smallest r in a subset of natural numbers. In Q2, the focus is on proving that in a class of 51 students, at least two must have the same number of friends, relying on the Pigeonhole Principle and mutual friendship assumptions. There is a consensus that the uniqueness of r and q in Q1 is straightforward and does not require extensive proof. Overall, the discussions highlight the application of foundational mathematical principles to solve the posed problems.
evanx
Messages
4
Reaction score
0
Please help me out!


Q1
m, n are natural numbers (which include zero for the sake of this question) and n =/= 0, then there are natural numbers q and r such that m= qn + r and r < n. Use the Well-Ordering Principle to prove this fact.

Q2
There are 51 students in a class. Prove there are at least two students with exactly the same number of friends.
 
Last edited:
Mathematics news on Phys.org
the well orderin principle says there is a smallest number of a certain type. So in this problem look for the desired number which is supposed to be small. take all numbers like it and among them take the smallest one and see if it is small enough to work for you.

problem 2 is false without assuming each person has at least one friend.
 
what have you done so far? the first one is a pretty straightforward application of the wop. you've got a set of possible r's which is a subset of N... do i need to say the rest? then you need to show that the smallest element is the "right size", and that yer r & q are unique (uniqueness should be pretty routine, even for a beginner - it's done like every other uniqueness proof)
 
hmm... I think problem 2 is just fine without any added assumption. Well you have to assume friendship is mutual. If a is a friend of b then b is a friend of a. And no one is their own friend. But these are reasonable assumptions. So my two big hints are: 1)there is nothing special about 51, any number will do, and 2) the pigeon hole principle. So try the same question with 3,4,5 students.

Hope that helps,
Steven
 
fourier jr said:
what have you done so far? the first one is a pretty straightforward application of the wop. you've got a set of possible r's which is a subset of N... do i need to say the rest? then you need to show that the smallest element is the "right size", and that yer r & q are unique (uniqueness should be pretty routine, even for a beginner - it's done like every other uniqueness proof)

I have got Q2 (sort of...) but am at a loss for Q1 since I am unfamiliar with the Well-ordering principle. I do not have to prove uniqueness of r and q though (I think).
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top