MHB How Do You Prove That sa + tb Divides gcd(a, b) in Bezout's Lemma?

  • Thread starter Thread starter nicodemus1
  • Start date Start date
AI Thread Summary
To prove Bezout's Lemma, it's established that gcd(a, b) divides both a and b, leading to the conclusion that gcd(a, b) also divides sa + tb. The discussion emphasizes that since sa + tb is a common divisor of a and b, it cannot exceed the greatest common divisor, d. The definition of gcd(a, b) asserts that any common divisor must divide the gcd itself. Therefore, since sa + tb divides both a and b, it follows that sa + tb must also divide gcd(a, b). The key takeaway is that any common divisor of a and b, including sa + tb, is inherently a divisor of their gcd.
nicodemus1
Messages
16
Reaction score
0
Good Day,

I have to prove Bezout's Lemma.

I have proven that since gcd (a, b) divides a and gcd (a, b) divides b, gcd (a, b) divides sa + tb.

I've made use of the well-ordering principle and Euclid's Algorithm to show that sa + tb divides a and sa + tb divides b.

What I can't prove is that sa + tb divides gcd (a, b).

Please help me here.

Thank you.
 
Mathematics news on Phys.org
nicodemus said:
Good Day,

I have to prove Bezout's Lemma.

I have proven that since gcd (a, b) divides a and gcd (a, b) divides b, gcd (a, b) divides sa + tb.

I've made use of the well-ordering principle and Euclid's Algorithm to show that sa + tb divides a and sa + tb divides b.

What I can't prove is that sa + tb divides gcd (a, b).

Please help me here.

Thank you.

since d = gcd(a,b) is the largest positive integer that divides both a and b,

and d divides sa + tb, d ≤ sa + tb, whence sa + tb = d, since sa + tb divides both a and b.
 
Good Day,

Thank you for your reply.

However, I still don't get why sa + tb divides gcd(a, b).

Thanks & Regards,
Nicodemus
 
the "g" in gcd stands for "greatest". the "cd" stands for "common divisor".

since sa + tb is a common divisor of a and b, it cannot be "greater than" the greatest common divisor of a and b, can it?

EVERY number divides it self.

specifically, the DEFINTION of gcd(a,b) is:

d: d|a and d|b and (for all c: if c|a and c|b then c|d).

we have shown that c = sa + tb divides both a and b. therefore c|d.

do you have a different definition of gcd(a,b)?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top