How Do You Calculate the Integral of A.dl Over a Cylinder Surface?

Click For Summary
To calculate the integral of A.dl over the cylinder surface defined by (x-3)² + y² = 2, Stokes' theorem can be applied. The curl of A is constant at (0, 0, -2), and the normal vector to the cylinder surface is k, as it lies in the xy-plane. The surface integral requires transforming to cylindrical coordinates, where the surface element ds can be expressed as r.d(theta).dz. The integral simplifies to multiplying the constant curl by the area enclosed by the boundary, which is πr² for the cylinder. The final result is derived from integrating the constant curl over the appropriate area, leading to a clear solution for the integral.
Hoofbeat
Messages
48
Reaction score
0
Could someone help me with the following question:

====
Q. A = (y,-x,0). Find Integral A.dl for a closed loop on the surface of the cylinder (x-3)^2 + y^2 = 2.
====

I'm managed to ascertain the following:
*I can use Stokes' theorem to solve the problem
*The curl (A) = (0,0,-2)
*Radius = sqrt2
*The normal to the cylinder, n, is equal to k (as cylinder lies in xy plane).

However, I have no clue how to do the actual surface integral! I'm fairly sure I need to transform into cylindrical coordinates, but I honestly have no idea how to use the actual 'cylinder' in the problem (is it to provide the limits?!) not how I form the integral? Please could someone offer some help. Thanks :cool:
 
Physics news on Phys.org
Hoofbeat said:
Could someone help me with the following question:

====
Q. A = (y,-x,0). Find Integral A.dl for a closed loop on the surface of the cylinder (x-3)^2 + y^2 = 2.
====

I'm managed to ascertain the following:
*I can use Stokes' theorem to solve the problem
*The curl (A) = (0,0,-2)
*Radius = sqrt2
*The normal to the cylinder, n, is equal to k (as cylinder lies in xy plane).

However, I have no clue how to do the actual surface integral! :cool:

It is all right up to now. The surface, for you have to integrate curl A, lies in the xy plane, its boundary is a circle with radius sqrt(2), and you are very lucky as curlA is constant on this surface and is perpendicular to it. You know that to get the surface integral of a vector-vector function A(r) you have to multiply the normal component of A with the surface element and integrate - you have to integrate a constant function now...

ehild
 
Thanks. So now do I write ds in terms of cylindrical coordinates then integrate cur(lA).n ds? ie.

curl(A).n = (0,0,-2)

and ds = r.d(theta).dz
thus integral is -2 dz?
 
Last edited:
Hoofbeat said:
Thanks. So now do I write ds in terms of cylindrical coordinates then integrate cur(lA).n ds? ie.

curl(A).n = (0,0,-2)

and ds = r.d(theta).dz
thus integral is -2 dz?

No, you have to integral the curl for the area the line encloses. If dS is the surface element and n is its normal unit vector, you have to calculate

\int { curl \vec{A}\vec n dS}.

The curl is constant, so you can write it in front of the integral, and it is multiplied by the projection of the area that is normal to the curl. If the line encloses the axis of the cylinder this area is r^2pi, and it is zero otherwise.


ehild
 
Last edited:
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

Replies
39
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
4
Views
5K
  • · Replies 10 ·
Replies
10
Views
5K