Help Solve x = theta: cot(x) / tan(x) + 1 = tan(x) + cot(x)

  • Thread starter Thread starter mcs117
  • Start date Start date
  • Tags Tags
    Theta
AI Thread Summary
The discussion revolves around solving the equation x = theta: cot(x) / tan(x) + 1 = tan(x) + cot(x). Participants clarify whether the goal is to solve for x or to prove the identity. Suggestions include rewriting cotangent as cos/sin for simplification and finding common denominators. A detailed algebraic manipulation is presented, leading to a potential solution involving factoring and reducing terms. The conversation emphasizes the importance of showing work and understanding the steps involved in solving or proving the equation.
mcs117
Messages
3
Reaction score
0
Can anyone help me solve this equation,

x=theta

cot(x)--------------[/color]tan(x)
------------ + ----------------- = 1 + tan(x) + cot(x)
1- tan(x)----------[/color]1- cot(x)
 
Physics news on Phys.org
What have you done so far? Solutions are not just given away in this forum.

Is it really "solve for x" or is it "prove this"?
 
prove this.
work:
1/tan(x)--------------[/color]tan(x)
------------ + -----------------
1- tan(x)----------[/color]1- 1/tan(x)

cot(x)--------------[/color]tanˆ2(x)
------------ + -----------------
1- tan(x)----------[/color]tan(x) - 1

cot(x)--------------[/color]tanˆ2(x)
------------ - -----------------
1- tan(x)----------[/color]1 - tan(x)

this is where i got stuck on.
cot(x) - Tanˆ2(x)
-----------------
1 - tan(x)

I can't seem to get rid of the bottom and make it 1 + tan(x) + cot(x)
 
Last edited:
Hmmm, I haven't tried this problem, but just a tip, instead of writing cot as 1/tanx write it as cos/sin. Makes things simpler.

The only thing I can suggest is get common denominators on the left side.

Wait, are you trying to prove the identity?
 
Hmm...
<br /> \begin{gathered}<br /> \frac{{\cot x}}<br /> {{1 - \tan x}} + \frac{{\tan x}}<br /> {{1 - \cot x}} = 1 + \tan x + \cot x \Rightarrow \hfill \\<br /> \frac{1}<br /> {{\left( {1 - \tan x} \right)\tan x}} + \frac{{\tan ^2 x}}<br /> {{\tan x - 1}} = \frac{{\tan ^2 x + \tan x + 1}}<br /> {{\tan x}} \Rightarrow \hfill \\<br /> \frac{{1 - \tan ^3 x}}<br /> {{1 - \tan x}} = \frac{{\tan ^2 x + \tan x + 1}}<br /> {{\tan x}} \Rightarrow \hfill \\<br /> \left( {1 - \tan ^3 x} \right)\tan x = \left( {1 - \tan x} \right)\left( {\tan ^2 x + \tan x + 1} \right) \Rightarrow \hfill \\<br /> \tan x - \tan ^4 x = \tan ^2 x + \tan x + 1 - \tan ^3 x - \tan ^2 x - \tan x \Rightarrow \hfill \\<br /> \tan x\left( {1 - \tan ^3 x} \right) = 1 - \tan ^3 x \Rightarrow \tan x = 1 \Rightarrow {\text{Mistake?}} \hfill \\ <br /> \end{gathered}
 
bomba923 said:
Hmm...
<br /> \begin{gathered}<br /> \frac{{\cot x}}<br /> {{1 - \tan x}} + \frac{{\tan x}}<br /> {{1 - \cot x}} = 1 + \tan x + \cot x \Rightarrow \hfill \\<br /> \frac{1}<br /> {{\left( {1 - \tan x} \right)\tan x}} + \frac{{\tan ^2 x}}<br /> {{\tan x - 1}} = \frac{{\tan ^2 x + \tan x + 1}}<br /> {{\tan x}} \Rightarrow \hfill \\<br /> \frac{{1 - \tan ^3 x}}<br /> {{1 - \tan x}} = \frac{{\tan ^2 x + \tan x + 1}}<br /> {{\tan x}} \Rightarrow \hfill \\<br /> \left( {1 - \tan ^3 x} \right)\tan x = \left( {1 - \tan x} \right)\left( {\tan ^2 x + \tan x + 1} \right) \Rightarrow \hfill \\<br /> \tan x - \tan ^4 x = \tan ^2 x + \tan x + 1 - \tan ^3 x - \tan ^2 x - \tan x \Rightarrow \hfill \\<br /> \tan x\left( {1 - \tan ^3 x} \right) = 1 - \tan ^3 x \Rightarrow \tan x = 1 \Rightarrow {\text{Mistake?}} \hfill \\ <br /> \end{gathered}

Line 3 should be
\frac{1-tan^3x}{(1-tanx)tanx}=\frac{1+tanx+tan^2x}{tanx}

-Dan
 
mcs117 said:
prove this.
Code:
1/tan(x)           tan(x)
------------ + -----------------
1- tan(x)        1- 1/tan(x)

cot(x)            tanˆ2(x)
------------ + -----------------
1- tan(x)         tan(x) - 1

cot(x)            tanˆ2(x)
------------ - -----------------
1- tan(x)          1 - tan(x)

cot(x) - Tanˆ2(x)
-----------------
   1 - tan(x)
Well, multiply through by tan x
(1 - tan^3(x))/((tan x)(1 - tan x))
Now you can factor the numerator as a difference of cubes, and reduce.
 
Back
Top