Help with a functions question

  • Thread starter Thread starter gaganpreetsingh
  • Start date Start date
  • Tags Tags
    Functions
Click For Summary
The discussion revolves around finding all functions f(x) that satisfy the equation f(x) + f(1-x) = x² - 1 for all real numbers x. A participant attempts to analyze the equation by substituting x with 1-x, leading to a contradiction when evaluating specific values. They conclude that the derived equations imply that 2r = 0 for all real r, which is impossible. The conversation raises questions about the continuity and differentiability of the function, but ultimately, it suggests that no such function exists that meets the given criteria. The final consensus is that there are no functions f defined for all real numbers that satisfy the equation.
gaganpreetsingh
Messages
24
Reaction score
0
Determine all functions f(x) defined for all real numbers x and taking real numbers as their values such that
f(x) + f(1-x) = x^2 - 1

If i replace x by 1-x i get the same LHS and if i equate them i get x=0.5. What I need to do more is what i don't know.
Please advise


PS sorry if i used the wrong group.
 
Physics news on Phys.org
Is f supposed to be continuous? Differentiable?

Anyways, one thing I often do with these types of problems is to figure out if I know what any of its values have to be. Then, I'll see how many values of the function I can express in terms of one particular point. E.G. I'll try to express everything I can in terms of, say, f(0), or maybe f(a) (where I let a be an unspecified constant)
 
I copied the question as it is.
 
Something seems wrong:

0 = 1² - 1 = f(1) + f(1-1) = f(1) + f(0) = f(0) + f(1) = f(0) + f(1-0) = 0² - 1 = -1

so 0 = -1. In general, for all real r:

2r
= (r² + r - 0.75) - (r² - r - 0.75)
= [(0.5 + r)² - 1] - [(0.5 - r)² - 1]
= [f(0.5 + r) + f(1 - (0.5 + r))] - [f(0.5 - r) + f(1 - (0.5 - r))]
= [f(0.5 + r) + f(0.5 - r)] - [f(0.5 - r) + f(0.5 + r)]
= f(0.5 + r) + f(0.5 - r) - f(0.5 - r) - f(0.5 + r)
= 0

so for all real r, 2r = 0, i.e. r = 0. This is clearly a contradiction (not every real number is zero) so there are no functions f whose domain is all of the reals and satisfy, for each x in the reals:

f(x) + f(1-x) = x² - 1
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 17 ·
Replies
17
Views
3K
Replies
26
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
8
Views
2K