Help with part of my Linear Algebra project - r-similitudes

TheRookie
Messages
3
Reaction score
0
Help with part of my Linear Algebra project - "r-similitudes"

Homework Statement



Definition: An "r-similitude" on ℝ² is an affine mapping f:ℝ²→ℝ² such that, for all x and y in ℝ², ǁf(x)-f(y)ǁ = rǁx-yǁ (where ǁ·ǁ denotes the Euclidean distance in ℝ²)
Let ABC be an equilateral triangle such that A=(0, 0) and B=(1, 0)
Let D,E,F be the midpoints of AB,BC,CA respectively

Question: Find r-similitudes of ℝ² mapping the triangular region ABC to the separate triangular regions ADF, DBE, FEC. What is the value of r?

Homework Equations




The Attempt at a Solution



All points: A=(0, 0), B=(1, 0), C=(1/2, √3/2), D=(1/2, 0), E=(3/4, √3/4) F=(1/4, √3/4)

For mappings from ABC to such triangular regions:
the 1-dimensional measure in ℝ² is scaled by a factor r
the 2-dimensional measure in ℝ² is scaled by a factor r²

--

There are some things I don't understand about this:
(i) How will the mappings to ADF, DBE, FEC be different if these three triangles are the same? Is the direction of the mapping important?
(ii) How do we use the definition of "r-similitude" in the mapping between regions?
(iii) How are the scale factors used in the mappings (if at all)?

Sorry if I seem kind of clueless about all this, but I'm pretty desperate here - I've been stuck with this all week. Any help will be very much appreciated.

Thanks,
Pete
 
Physics news on Phys.org


I think we are doing the same project. I've used this:
http://ecademy.agnesscott.edu/~lriddle/ifs/siertri/siertri.htm

I think the "r0-similitude f1" (that maps ABC to ADF) is the f1(x) mentioned roughly half way down the page. It is the matrix that is multiplied with the coordinate vector.

e.g. f1(B) = {{0.5 , 0}, {0, 0.5}}.(1 , 0) = D

Though the triangles have the same size and dimensions they are however in different places so f2(x) will map ABC to a similar triangle as in f1(x) but it will be in a different position.

I am ALMOST certain this is correct..

Tom
 


This thread has been closed because of academic misconduct.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Replies
2
Views
2K
Replies
5
Views
1K
Replies
1
Views
1K
Replies
8
Views
2K
Replies
10
Views
5K
Back
Top