1. PF Contest - Win "Conquering the Physics GRE" book! Click Here to Enter
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Help with Partial Differentialtion

  1. Jun 5, 2009 #1
    1. The problem statement, all variables and given/known data
    I am given [tex]x^2 + y^2 = r^2[/tex]

    Need to find [tex]\frac{\partial y}{\partial x}=-\frac{1}{r}sin(\frac{v}{r}t)[/tex]

    2. Revelant equations
    x parametriztion of circle is:

    Trigonometric Identity
    [tex]sin^2t + cos^2t=1[/tex]
    [tex]1 + \frac{cos^2t}{sin^2t} = \frac{1}{sin^2t}[/tex]

    3. The attempt at a solution
    so [tex]y = (r^2 - x^2)^\frac{1}{2}[/tex]

    [tex]\frac{\partial y}{\partial x}=\frac{1}{2}(r^2 - x^2)^\frac{-1}{2}(-2x)[/tex]
    simplify: [tex]\frac{\partial y}{\partial x}=-x(r^2 - x^2)^\frac{-1}{2}[/tex]

    [tex]\frac{\partial ^2y}{\partial x^2}=-(r^2 - x^2)^\frac{-1}{2}+\frac{-1}{2}(r^2 - x^2)^\frac{-3}{2}(-2x)(x)[/tex]
    Simplify: [tex]\frac{\partial ^2y}{\partial x^2} = -\frac{1}{(r^2 - x^2)^\frac{1}{2}}-\frac{x^2}{(r^2 - x^2)^\frac{3}{2}}[/tex]

    Substitute parametrization to second partial derivative:
    [tex]\frac{\partial ^2y}{\partial x^2} = -\frac{1}{(r^2 - r^2cos^2(\frac{v}{r}t))^\frac{1}{2}}-\frac{r^2cos^2(\frac{v}{r}t)}{(r^2 - r^2cos^2(\frac{v}{r}t))^\frac{3}{2}}[/tex]
    [tex]\frac{\partial ^2y}{\partial x^2} = -\frac{1}{rsin(\frac{v}{r}t)}-\frac{r^2cos^2(\frac{v}{r}t)}{r^3sin^3(\frac{v}{r}t)}[/tex]
    [tex]\frac{\partial ^2y}{\partial x^2} = -\frac{1}{rsin(\frac{v}{r}t)}(1 + \frac{r^2cos^2(\frac{v}{r}t)}{r^2sin^2(\frac{v}{r}t)})[/tex]
    [tex]\frac{\partial ^2y}{\partial x^2} = -\frac{1}{rsin(\frac{v}{r}t)}\frac{1}{sin^2(\frac{v}{r}t)}[/tex]

    For some reason i ended up with [tex]\frac{1}{sin^2(\frac{v}{r}t)}[/tex] instead of [tex]sin^2(\frac{v}{r}t)[/tex]. Did i do any intermediate steps wrong?
  2. jcsd
  3. Jun 5, 2009 #2


    User Avatar
    Science Advisor
    Homework Helper

    I don't think you are doing anything wrong. I get y''=(-r^2)/y^3 which seems to agree with you final answer using implicit differentiation.
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook