the baby boy
- 7
- 0
show that P \leftrightarrow Q is equal to (P\wedgeQ) \vee (\negP \wedge\negQ)
(P→Q) \wedge (Q→P)
(\negP\veeQ) \wedge (\negQ\veeP)
[\neg(P\wedge\negQ)\wedge\neg(Q\wedge\negP)]
\neg[(P\wedge\negQ)\vee(Q\wedge\negP)]
I don't know which law to use from this point on to prove the equivalence.
(P→Q) \wedge (Q→P)
(\negP\veeQ) \wedge (\negQ\veeP)
[\neg(P\wedge\negQ)\wedge\neg(Q\wedge\negP)]
\neg[(P\wedge\negQ)\vee(Q\wedge\negP)]
I don't know which law to use from this point on to prove the equivalence.