HELP with trigonometric identites

  • Thread starter Thread starter Deep_Thinker97
  • Start date Start date
  • Tags Tags
    Trigonometric
Deep_Thinker97
Messages
11
Reaction score
0
Okay so I'm solving this equation: 2sin(x)-3cos(x)=1
I'm solving it by equating the left hand side to a single trigonometric equation.
What I did first: I equated the left hand side to a sine function. So
2sin(x)-3cos(x)=Rsin(x+a). Then I used the addition formula.
Rsin(x+a)= Rsin(x)*cos(a)+Rcos(x)*sin(a). Then I equated the coefficients.
So, Rcos(a)=2 and Rsin(a)=-3.
So I solved for R & a (not going to go into the details) and found the R=sqrt(13) and a=-56.31. So 2sin(x)-3cos(x)=sqrt(13)sin(x-56.31)
Then I said sqrt(13)sin(x-56.31)=1 (as required in first equation), solved for x and got 72.4 and 220.2 (if 0<x<360). This, according to the textbook solution, is the correct answer.
HERE COMES THE PROBLEM
As stated, I equated the left hand side to Rsin(x+a). But surely, it doesn't matter whether I equate the equation to Rsin(x+a), Rsin(x-a), Rcos(x+a) or Rcos(x-a). Surely, when I solve for x, it should be the same answer, regardless which formula I used. So I tested this out.
I equated 2sin(x)-3cos(x) to Rcos(x+a) instead
Expanded Rcos(x+a) to Rcos(x)cos(a)-Rsin(x)sin(a)
Equated coefficients: Rcos(a)=-3 & -Rsin(a)=2, so Rsin(a)=-2
Solved for R and a, and got R=sqrt(13) and a=33.69
So 2sin(x)-3cos(x)=sqrt(13)cos(x+33.69).
Set the equation: sqrt(13)cos(x+33.69)=1
Solved for x and got, *drum roll*, 40.21 and 252.41. Two completely different answers!
Got so frustrated that I decided to generate the graphs on a graph sketcher to see what was going on. Turns out that sqrt(13)sin(x-56.31) generates the same graph as 2sin(x)-3cos(x), thus confirming that it is a correct equation.
However, the graph of sqrt(13)cos(x+36.69) generates the REFLECTION in the x axis, of 2sin(x)-3cos(x).
Why is this happening! What have I done wrong in calculating the cos equation to mean that it doesn't produce the same graph as the others!
 
Mathematics news on Phys.org
Deep_Thinker97 said:
Okay so I'm solving this equation: 2sin(x)-3cos(x)=1
I'm solving it by equating the left hand side to a single trigonometric equation.
What I did first: I equated the left hand side to a sine function. So
2sin(x)-3cos(x)=Rsin(x+a). Then I used the addition formula.
Rsin(x+a)= Rsin(x)*cos(a)+Rcos(x)*sin(a). Then I equated the coefficients.
So, Rcos(a)=2 and Rsin(a)=-3.
So I solved for R & a (not going to go into the details) and found the R=sqrt(13) and a=-56.31. So 2sin(x)-3cos(x)=sqrt(13)sin(x-56.31)
Then I said sqrt(13)sin(x-56.31)=1 (as required in first equation), solved for x and got 72.4 and 220.2 (if 0<x<360). This, according to the textbook solution, is the correct answer.
HERE COMES THE PROBLEM
As stated, I equated the left hand side to Rsin(x+a). But surely, it doesn't matter whether I equate the equation to Rsin(x+a), Rsin(x-a), Rcos(x+a) or Rcos(x-a). Surely, when I solve for x, it should be the same answer, regardless which formula I used. So I tested this out.
I equated 2sin(x)-3cos(x) to Rcos(x+a) instead
Expanded Rcos(x+a) to Rcos(x)cos(a)-Rsin(x)sin(a)
Equated coefficients: Rcos(a)=-3 & -Rsin(a)=2, so Rsin(a)=-2
Solved for R and a, and got R=sqrt(13) and a=33.69
So 2sin(x)-3cos(x)=sqrt(13)cos(x+33.69).
Set the equation: sqrt(13)cos(x+33.69)=1
Solved for x and got, *drum roll*, 40.21 and 252.41. Two completely different answers!
Got so frustrated that I decided to generate the graphs on a graph sketcher to see what was going on. Turns out that sqrt(13)sin(x-56.31) generates the same graph as 2sin(x)-3cos(x), thus confirming that it is a correct equation.
However, the graph of sqrt(13)cos(x+36.69) generates the REFLECTION in the x axis, of 2sin(x)-3cos(x).
Why is this happening! What have I done wrong in calculating the cos equation to mean that it doesn't produce the same graph as the others!
cos(x) = -sin(x - 90°), which you can verify by expanding the right side.

So cos(x + 33.69°) = -sin(x - 90° + 33.69°) = -sin(x + 56.31°)
So the left and right sides are equal in magnitude, but opposite in sign. Adding a sign to sin(x + 56.31°) causes a reflection across the x-axis.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top