Help with velocity/redshift/distance law

  • Thread starter Thread starter Dave Rutherfo
  • Start date Start date
  • Tags Tags
    Law
AI Thread Summary
Dave Rutherford has derived a velocity/redshift/distance law, v = c ln(1 + z) = H_0 d_0, to analyze the universe's expansion rate, aiming to demonstrate that it is not accelerating and thus negating the need for dark energy. Feedback from another user suggests that Dave's formula may not accurately reflect recession speeds at higher redshifts, as it deviates from values calculated using Morgan's calculator. Despite this, Dave's values for recession velocities at lower redshifts are generally lower than those from the calculator, potentially indicating a slower or non-accelerating expansion rate. He seeks clarification on whether his findings support his hypothesis and how to further validate them. The discussion highlights the complexity of relating recession speed and redshift in cosmological models.
Dave Rutherfo
Messages
2
Reaction score
0
I've derived a velocity/redshift/distance law,

<br /> <br /> v = c \ln(1 + z) = H_0 d_0<br /> <br />

where v is the recession velocity, c is the speed of light, z is the cosmological redshift, H_0 is the present Hubble constant, and d_0 is the present distance of the source.

I would like to relate my law to the data, hopefully to show that the
expansion rate of the universe is not accelerating, thus eliminating the
need to invoke dark energy. Any help would be greatly appreciated.

For the derivation of this law and more, please click on the following link

http://www.softcom.net/users/der555/horizon.pdf

Thanks,
Dave Rutherford
 
Space news on Phys.org
Dave Rutherfo said:
I've derived a velocity/redshift/distance law,

<br /> <br /> v = c \ln(1 + z) = H_0 d_0<br /> <br />

where v is the recession velocity, c is the speed of light, z is the cosmological redshift, H_0 is the present Hubble constant, and d_0 is the present distance of the source.

I would like to relate my law to the data, hopefully to show that the
expansion rate of the universe is not accelerating, thus eliminating the
need to invoke dark energy. Any help would be greatly appreciated.

For the derivation of this law and more, please click on the following link

http://www.softcom.net/users/der555/horizon.pdf

Thanks,
Dave Rutherford

Your proposed equation looks wrong, Dave. Check it against the recession speeds given by Morgan's calculator. The link is in my sig. Be sure to enter the usual parameters 0.27, 0.73, and 71 for present matter fraction, lambda fraction, and Hubble rate.

When I do that and put in z=10, I get that the recession speed is 2.28 c.
You would have the recession speed be ln(11) c. That is 2.40 instead of 2.28. Well that is not too bad!

Now when I put in z=1090, I get that the recession speed is 3.3.
But you would have it be be ln(1091) = 7.0. That is way off. Either Morgan's calculator, or your formula, or both must be being pushed too far.

Maybe your formula is all right as a rough approximation as long as you just apply it to small redshifts, and will therefore suit your purposes (depending on how you intend to use it.) But as a rule I don't think it works. The relation between recession speed and redshift is not that simple.

Part of your equation is right though. Hubble law does say v = Hd. Hubble law does not talk directly about redshift. It gives the recession speed.
 
Last edited:
marcus said:
Your proposed equation looks wrong, Dave. Check it against the recession speeds given by Morgan's calculator. The link is in my sig. Be sure to enter the usual parameters 0.27, 0.73, and 71 for present matter fraction, lambda fraction, and Hubble rate.

When I do that and put in z=10, I get that the recession speed is 2.28 c.
You would have the recession speed be ln(11) c. That is 2.40 instead of 2.28. Well that is not too bad!

Now when I put in z=1090, I get that the recession speed is 3.3.
But you would have it be be ln(1091) = 7.0. That is way off. Either Morgan's calculator, or your formula, or both must be being pushed too far.

Maybe your formula is all right as a rough approximation as long as you just apply it to small redshifts, and will therefore suit your purposes (depending on how you intend to use it.) But as a rule I don't think it works. The relation between recession speed and redshift is not that simple.

Part of your equation is right though. Hubble law does say v = Hd. Hubble law does not talk directly about redshift. It gives the recession speed.


Thanks for the reply, Marcus.

Using the current limits of observation for redshift, 0 to 6, my values for recession velocity (my v), for a given redshift (z), are less than Morgan's calculator's corresponding values for recession velocity (Morgan's v) using the values 0.27, 0.73, and 71 for the other quantities that you gave above.

Here are the comparisons I came up with (all velocities x c):

z ... Morgan's v ... my v
---------------------------
0 ... 0.00 ... 0.00
1 ... 0.78 ... 0.69
2 ... 1.24 ... 1.10
3 ... 1.53 ... 1.39
4 ... 1.73 ... 1.61
5 ... 1.87 ... 1.79
6 ... 1.99 ... 1.95

If we only go by these results (which are based on the current limits of observation for redshift), my values seem to indicate that the universal expansion rate is either not accelerating or accelerating more slowly than the currently accepted rate. Correct? If yes, how can I determine which it is? If no, why not?

Thanks,
Dave
 
https://en.wikipedia.org/wiki/Recombination_(cosmology) Was a matter density right after the decoupling low enough to consider the vacuum as the actual vacuum, and not the medium through which the light propagates with the speed lower than ##({\epsilon_0\mu_0})^{-1/2}##? I'm asking this in context of the calculation of the observable universe radius, where the time integral of the inverse of the scale factor is multiplied by the constant speed of light ##c##.
The formal paper is here. The Rutgers University news has published a story about an image being closely examined at their New Brunswick campus. Here is an excerpt: Computer modeling of the gravitational lens by Keeton and Eid showed that the four visible foreground galaxies causing the gravitational bending couldn’t explain the details of the five-image pattern. Only with the addition of a large, invisible mass, in this case, a dark matter halo, could the model match the observations...
Hi, I’m pretty new to cosmology and I’m trying to get my head around the Big Bang and the potential infinite extent of the universe as a whole. There’s lots of misleading info out there but this forum and a few others have helped me and I just wanted to check I have the right idea. The Big Bang was the creation of space and time. At this instant t=0 space was infinite in size but the scale factor was zero. I’m picturing it (hopefully correctly) like an excel spreadsheet with infinite...
Back
Top