Help with work and energy problem

AI Thread Summary
The discussion revolves around solving a physics problem related to work and energy, specifically focusing on a car's stopping distance. The first part successfully calculates the horizontal force applied by the car while stopping on a level road, yielding a force of 5402 N using the formula F=ma. The second part of the problem involves finding the stopping distance of the same car on an incline of 18.9 degrees, where the user attempts to derive the necessary equations but struggles to arrive at the correct answer. They express confusion about whether to use the vertical component of the force in their calculations. The thread highlights the challenges faced in applying both work/energy and kinematics concepts to solve the problem accurately.
NAkid
Messages
70
Reaction score
0
Hi i need help with this problem. The first part asks
A car (m = 890.0 kg) traveling on a level road at 27.0 m/s (60.5 mph) can stop, locking its wheels, in a distance of 60.0 m (196.9 ft). Find the size of the horizontal force which the car applies on the road while stopping on the road. First solve this problem using work/energy concepts and then check your answer using kinematics/force law concepts.

I solved this by finding the acceleration and plugging into formula F=ma=5402N

The second part asks
Find the stopping distance of that same car when it is traveling up a 18.9deg slope, and it locks its wheels while traveling at 27.0 m/s (60.5 mph). Assume that muk does not depend on the speed.

I drew a free body diagram and came up with the following relationships
F-fk-mgsin(18.9)=ma where F=5402N
N-mgcos(18.9)=0

How do I solve for the horizontal distance? Is it just the vertical component of the Force?
 
Physics news on Phys.org
I just tried using the formula Vf^2 = v0^2 + 2adx -- where final velocity=0, initial velocity is given, and i solved for a using the above equation F-ukmgcos(18.9)-mgsin(18.9)=ma. But I still didn't get the right answer..
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top